

Аңдатпа

Дипломдық жобада мобильді құрылғалыр үшін мультимедиа

контентінің(презентация, аудио және видеохабар) жеткізуін жүзеге

асыратын ақпараттық жүйені жобалау қаралған. Жобада жүйе өнімділігін

бағалау үшін оңтайлы параметрлері қаралған.

Жоба төрт бөлімнен тұрады, олар мултимедиа контентін жеткізу

әдісін жүзеге асыратын ақпараттық жүйе құру, техникалық есептеулер,

еңбек жағдайларын және экономикалық тиімділігін талдау. Бұл жоба

Қазақстанда ғана емес бүкіл әлемде талапты болатыны анықталды.

Жобадағы проблемаларды шешудің өзіндік тәсілі мен бірқатар

артықшылыктары бар.

Экономикалық бөлімінде табыс жолдары, алдағы даму жолдары

бойынша жұмыс атқарылды. Бұл экономикалық орындылығын дәлелдейді.

Аннотация

В дипломном проекте рассмотрено проектирование информационной

системы, реализующей доставку мультимедийного контента (презентация,

аудио и видеотрансляция и т.д.) для мобильных устройств. В проекте

рассмотрены параметры для оценки производительности системы.

Проект состоит из четырех глав, которые описывают основные

методы выбора решения по созданию информационной системы,

реализующей доставку мультимедийного контента, технических расчетов,

анализа условий труда и экономической выгодности. Определенно, что

данный проект будет востребован, как на рынке Казахстана, так и во всем

мире. Он имеет оригинальный подход к решению имеющихся проблем и

имеет ряд преимуществ.

В экономической части был проработан способы получения дохода

от приложения, для дальнейшего развития, что доказывает экономическую

целесообразность.

Annotation

The diploma project considered the design of an information system that

implements the delivery of multimedia content (presentation, audio and video

broadcasting, etc.) for mobile devices. The project studies the parameters for

assessing the performance of the system.

The project consists of four chapters, which describe the main methods of

choosing a solution for creating an information system that implements the

delivery of multimedia content, technical calculations, analysis of working

conditions and economic benefits. Definitely, that this project will be in demand,

both in the market of Kazakhstan, and in the whole world. The application has an

original approach to solving problems and has several advantages.

In the economic part, ways to generate income from the application, for

 8

further development have been worked out, which proves economic feasibility.

 9

Content

Introduction

1 Analysis of the current state of WebRTC technology 8

 1.1 What does RTC term stands for? 8

 1.2 Advantages of WebRTC 9

 1.3 Methods of data transmission in peer-to-peer web applications

 1.4 Standards and Development of WebRTC

10

11

 1.4 Usage of WebRTC in present time 12

2 Practical realization of the project 14

 2.1 Formulation of the problem 15

 2.2 The architecture of the interaction of the modules of the web application

video conferencing

16

 2.3 Algorithms for establishing connections between clients via WebRTC

Prot protocol

 2.4 Acquiring Audio and Video with getUserMedia

 2.5 Real-Time Network Transport

 2.6 RTCPeerConnection API

 2.7 Establishing a Peer-to-Peer Connection

 2.8 Multiparty Architectures

 2.9 Listing of the program

22

25

25

26

27

29

3 Life activity safety section 40

 3.1 Assessment of the forthcoming physical and mental load 40

 3.2 The calculation of the integral scoring after optimization 44

 3.3 Conclusion of the section 47

4 Economical part 47

 4.1 Calculation of the cost of software development 47

 4.2 Calculation of the complexity of software development 48

Conclusion 56

List of abbreviations 57

List of references 58

Appendix A Listinng of programming of CSS part of the application 60

Appendix B List of programming of server part 61

Appendix C List of programming of getUserMedia function 62

Appendix D Anti-plagiarism certificate

Appendix E Electronic version of the diploma work and demonstration

materials (CD-R)

Appendix F Handouts (A4 format – 13 pages)

Introduction

In the development of video conferencing systems, the main attention is paid

to the methods of multimedia data processing, methods of data transmission,

optimization of the architecture of the connection of client applications. The

implementation of video conferencing systems in mobile devices imposes its

limitations on the quality and volume of information processed due to insufficient

computing and network embedded resources of mobile heterogeneous devices.

Insufficient bandwidth of communication channels for the transmission of

rapidly growing amounts of transmitted multimedia data requires the development

of new methods of transmission. In multi-user video conferencing systems, multiple

identical multimedia data must be transmitted at the same time between all

participants in a communication session, which significantly increases the volume

of flows and the load on the server.

In addition to these disadvantages, there is a problem of embedding

applications for use in larger systems. This problem is due to the fact that all

existing applications are complete software and do not have the functionality for

integration into third-party systems.

Therefore, the relevance of the development of architectures, algorithms and

software for automatic processing of multimedia data streams in peering (peer-to-

peer) web video conferencing applications, providing a reduction in the amount of

data transmitted and the ability to build speech and multimodal interfaces for

infocommunication applications, is confirmed by the lack of cross-platform

software and hardware heterogeneous client applications that support multi-channel

communication of remote subscribers.

The aim of the diploma work is development of an information system that

implements the delivery of multimedia content (presentation, audio and video

broadcasting, etc.) for mobile devices.

For achieving this aim, it is necessary to solve the following tasks:

- Analysis of modern architecture of video conferencing systems, as well as

methods and software for multichannel processing of audio-visual and service data

streams;

- Development of server architectures in peer-to-peer video conferencing

systems that reduce the amount of data transferred and reduce the consumption of

server client applications;

- Development of algorithms for server parts of the video conferencing

system and establishing connections between clients that provide distribution and

processing of their data flows to clients;

- Development of software for server parts of the web application for screen

sharing, providing cross-platform and multi-channel communication sessions

between heterogeneous devices of distributed subscribers.

 8

1 Analysis of the current state of WebRTC technology

Video conferencing applications that run on desktop computers in most cases

have the necessary resources to process data, but with a large number of incoming

and outgoing streams, problems may occur due to overload of the Central processor,

RAM and graphics card of the device. On mobile devices, the situation is

aggravated by the lack of resources necessary for processing large amounts of data

and small displays that are not able to correctly display more than two participants

at the same time. Specialized collaboration systems, in addition to transmitting

audio-visual data streams captured by microphones and video cameras, allow the

exchange of additional multimedia information, such as the transmission of the

current presentation slide, as well as the possibility of joint editing of documents

and handwritten drafts.

These and other problems of designing video conferencing systems are

discussed in the first Chapter. When analyzing the architecture, capabilities and

number of users of existing video conferencing systems, the most promising were

chosen peering systems that provide a reduction in the amount of data transmitted

and the ability to build voice and multimodal interfaces.

1.1 What does RTC term stands for?

The topic of real-time communications has attracted considerable attention,

but generally speaking, the term RTC is not new – it has long been so called any

way of interaction in which you can ignore delays. RTC includes the exchange of

data in full-duplex (bidirectional) and half duplex (subscribers use the carrier

alternately) modes, as well as data transmission via peer-to-peer networks (P2P).

An unaddressed broadcast transmission (Broadcast) and its subset (Multicast)

addressed to a limited group of subscribers does not correspond to the

representation of the RTC — they do not exchange in both directions. With the

advent of the Internet to the traditional means of the category of RTC added instant

messaging technology (IM), messaging at the application level in the networks of

IRC (Internet Relay Chat), various technologies of teleconferencing, at the same

time, e-mail and blogs are not attributed to the RTC due to the noticeable delay.

In the creation of the "new telephony" the main role will be played not by

services, as it has been so far, but by applications, which, for example, can find

subscribers by their names, freeing subscribers from binding to numbers. It is very

good that the restructuring to a new telephony is limited exclusively to applications

and does not affect the actual technology of signal transmission — physics and

logic of communications can develop autonomously. Ultimately, we are talking

about the adoption of new standards, which are comparable in importance to the

TCP/IP Protocol family — the future is seen in peer-to-peer networks, well-known

to users of decentralized file-sharing networks. Simplistically, their essence is that

the server only establishes a connection between the exchange participants, and then

the rest of the exchange is given to the subscribers.

Most often WebRTC is presented as a sum of technologies of combining two

browsers (Figure 1.1) and their transformation into communication devices, but this

 9

is only partly true. In the first stages, computers or gadgets capable of supporting

traditional browsers will really be combined in this way, and the first WebRTC

applications will be limited to pair or group communication — for example, such as

teleconferences. But, theoretically, nothing prevents to use the same principles of

WebRTC in TVs, cars, cameras and other professional and household appliances,

where not necessarily the presence of a person, that is WebRTC will be in demand

on the Internet of things.

Figure 1.1 – Browser-to-browser technology

1.2 Advantages of WebRTC

Indeed, WebRTC has a number of advantages: "machine browsers" are not

tied to a specific OS, do not need to download plugins, and downloadable browsers

can save objects of the Internet of things from one of the potential threats: if the

object to make non-renewable, it is easy to become the subject of hacker attacks. If

everything goes as it seems today, we can assume that we are on the verge of

serious changes in communications in General, and as for browsers, the change in

their functionality can be compared with what happened in 1993, when the

opportunity to reproduce images by means of browsers opened — at this moment

the Web ceased to be a purely text space.

The idea appeared on the market a couple of years ago. Although the idea of

using peer-to-peer networks for content delivery existed before, they all used

additional SOFTWARE, which prevented active development. For example, peer-

to-peer video delivery tried to make a social network "Vkontakte". When trying to

view the video, users with Flash Player version 10.1 or later were asked to allow

connection to a peer-to-peer network (implemented with Flash Player 10.1 and

Adobe Cirrus). And the popular social network is not the only resource that tried to

reduce the cost of video broadcasting. Another interesting example is the peer-to-

peer network, organized by the order of CNN by the Danish company Octoshape

using the plug-in for Flash Player. But in both cases, users were wary of the

innovation. Many thought that they were trying to install some spyware. And with

the development of WebRTC, we talked about a purely browser-based

 10

implementation that works without additional SOFTWARE. PeerCDN is perhaps

the first example of using WebRTC to deliver "heavy" content (not just video, but

also images, as well as files from storage).

PeerCDN was built using JavaScript. Thanks to the script embedded in the

page, fragments of "heavy" content already loaded into the browser buffer could be

transferred to other users, thereby reducing the load on the Central server. The

system allowed to save significantly on the cost of traffic (especially at peak loads).

According to the "laboratory" tests conducted by the startup, the savings could

reach 90%. But, apparently, PeerCDN had no commercial results (until the last

moment The decision was at the stage of public beta). At the end of 2013, the

technology together with the developers came under the leadership of Yahoo!

(conditions of transition are not disclosed). At the same time, information about the

models of monetization of PeerCDN has not yet been received. Third-party

observers suggested that the developers will use their servers as paid trackers and

authorization centers when creating a peer-to-peer network. But these assumptions

were neither confirmed nor refuted.

 Most users do not go into the technical details of the peer-to-peer network.

Although the forums devoted to similar solutions, you can find comments

dissatisfied with the fact that the organizers of the broadcast without explicit

permission plan to use the resources of their workstations and channels (which may

well imply payment for megabytes).

The WebRTC technology itself is quite new. So far it is not abused, and it is

allowed in browsers by default. Perhaps if this becomes a problem for users,

browser developers can introduce some kind of setting, like for JS, that will allow to

refuse the use of WebRTC. But so far there is no such practice.

1.3 Methods of data transmission in peer-to-peer web applications

Despite the rapid pace of development of Internet technologies, there are

many problems associated with the streaming of video and audio. In many ways,

these problems arise due to insufficient bandwidth. Since video systems require

large network resources even for video transmission between two participants,

support for multi-user video conferencing is extremely difficult.

Now hundreds of thousands of users can simultaneously use peer-to-peer

networks. Common practice in p2p video streaming systems is the Association of

participants viewing the same content in "swarm" and redistribution of parts of

video content exclusively between the members of this swarm. For such a channel-

isolated structure P2P systems characteristic of the delay for switching channels and

the backlog of content playback related to the churn of the channel and the

imbalance of the number of receiving and relaying nodes. In General, global P2P

networks with a channel-isolated structure currently have serious performance

problems, which will become more serious with the increase in the number of

channel users.

The performance of video streaming methods in P2P networks also depends

on the configuration of the network itself, its topology, heterogeneity of network

resources of subscribers, the bandwidth of their communication channels. Unlike

 11

joint download files where small bandwidth leading to slow downloading, with

streaming video of low-speed connectivity becomes a real problem. Video

compression, which allows to reduce the channel load without a significant increase

in the load on the end user device when encoding/decoding the signal, also remains

relevant.

1.4 Standards and Development of WebRTC

Enabling real time communication in the browser is actually an ambitious

undertaking, and arguably, one of the most significant additions to the web platform

since its very beginning. WebRTC breaks away from the familiar client-to-server

communication model, which results in a complete re engineering of the networking

layer in the browser, and also brings a whole new media stack, which is actually

necessary to enable efficient, real time processing of video and audio.

As a result, the WebRTC architecture consists of over a dozen different

standards, covering both the application and browser APIs, as well as a variety of

protocols and data formats required to make it work:

• Web Real Time Communications (WEBRTC) W3C Working Group is actually

responsible for defining the browser APIs.

• Real Time Communication in Web browsers (RTCWEB) is actually the IETF

Working Group responsible for defining the protocols, security, data formats, and

all other essential elements to enable peer-to-peer communication in the internet

browser.

WebRTC isn't a blank slate standard. While the primary purpose of its is usually

to enable real time communication between browsers, it's also designed such that it

may be integrated with existing communication systems: voice over IP (VOIP),

various SIP clients, and perhaps the public switched telephone network (PSTN),

just to name just a few. The WebRTC standards don't define any specific

interoperability requirements, or perhaps APIs, but they do attempt to reuse the

same concepts and protocols where possible.

Put simply, WebRTC isn't just about bringing real time communication to the

browser, but also about bringing all of the capabilities of the Web to the

telecommunications world - a 1dolar1 4.7 trillion industry in 2012! Not

surprisingly, this's a significant growth and one that many existing startups,

businesses, and telecom vendors are following closely. WebRTC is a lot more than

just another browser API.

WebRTC uses two audio codecs, the G 711 and OPUS, and the VP8 and H. 264

video codec. They are shown in Figure 1.2.

 12

Figure 1.2 – Technologies used in WebRTC

1.5 Usage of WebRTC in present time

Project statistics show that the solution allows you to save up to 70% of

traffic at peak times, and at normal times - up to 30%. At the same time, for the

normal operation of the peer-to-peer network, simultaneous viewing of video by

hundreds of users is enough. And to achieve 50% savings makes it possible for 500

active viewers.

So at the moment, we are aware of four competitors offering similar

technologies.

Peer5 is a tool for building a decentralized network for the delivery of bulk

content. Unfortunately, there is no detailed description of its principal features on

the solution website, except for mentioning the possibility of using not only for

video, but also for audio, online games and delivery of three-dimensional images.

However, part of the project code is distributed under the Open Source license.

In 2013, the Peer5 solution became part of Kaltura's technology platform. In

our country, Kaltura is known for a platform that provides users with the ability to

create their own videos based on media content distributed under the Creative

Commons license, including through resources such as YouTube. In addition,

Kaltura develops solutions for publishing and monetizing media content (in

particular, OTT-platform). Integration of Peer5 into the Kaltura platform is

interesting because the companies jointly demonstrated the capabilities of The

technology, simultaneously connecting users from the USA, Europe, Asia and

Australia. The collected statistics showed that about 90% of the traffic went through

 13

the peer-to-peer network. The average time to start a video in the user's browser has

been reduced from" average for the industry " 2.2 seconds to 1.5 seconds (this

parameter is considered important thanks to a report of analysts from the California

company Conviva, according to which the average user refuses to view the video

somewhere between 2 and 3 seconds waiting for the launch). Apparently, the result

achieved in the course of the demonstration is now 90% and is used by similar

projects in their marketing materials.

Startup does not report about other clients or implementations, as well as

about monetization schemes.

Swarmify allows you not only to work with video, but also to preload other

content, for example, pages of the site, which are likely to be transferred to a mass

user (the founders of the startup call this opportunity "predictive download"). The

site solutions reports four customers: the online store MakeUseOf, advertising

Agency, Digital MGMT, resource SwimSwam and some of the company Entertain

DL. In addition, it reveals the principles of monetization: the tariff plan is

determined by the total amount of traffic transmitted through the peer-to-peer

network for the month. Up to 250 GB per month is free, up to 10 TB - for $ 99 per

month, large volumes - according to the individual tariff plan.

On the solution website, there is a demonstration with statistics, which allows

you to clearly see the principle of its operation.

Viblast is a solution that specializes in the transmission of live HD video to

mobile devices and web clients. Unlike other projects, developers focus on the ease

of integration (which comes down to integrating a pair of libraries into mobile

applications and inserting a number of lines of code) in the advertising of this

startup. Unlike the competitors described above, Viblast offers demo applications

for iOS and Android.

The option is offered as a service. Monetization is based on the amount of

saved traffic (i.e. traffic transmitted through the peer-to-peer network). At the

moment, the solution supports only "live" broadcasts, but announced support for

video on demand, which should appear in the third quarter of this year.

The solution also has a demo. The service clients are not reported.

StreamRoot is another solution that works with both live and on-demand

video streams, supporting adaptive streaming. At the moment, the developers have

implemented plugins for JWplayer, Flowplayer and VideoJS, but are ready to

combine their product with any player based on HTML5.

The developer States that its customers are France televisions, orange

operator and L'equipe. Monetization of the service is based on the volume of

content transmitted per month, as well as the average number of viewers on the site.

A free Saas distribution model has been announced, but it is still in development

mode (interested parties are invited to subscribe to the newsletter for further

details).

Interestingly, for all of these solutions offer a rather scant explanation of the

details of the technology on the site, preferring to conduct sales through a 30-day

trial version. Although all of them have something to tell (in particular, about the

encryption of the transmitted content).

 14

These companies are not the only market participants who have paid attention

to peering. Not everyone bets on WebRTC, but the idea itself, as they say, "is in the

air."

Netflix is engaged in development in this area, Akamai also launched some

test projects. As I said earlier, Vkontakte had an attempt to use peer-to-peer video

transmission from Adobe. However, then they refused this idea (perhaps, at their

volumes it is not very effective, since the number of videos there is huge and the

consumption is smeared on different rollers; in addition, Adobe had to be

additionally allowed peering transmission, which, I think, frightened off many). We

plan to present our solution at IBC (stand 14.D01 in the connected world pavilion)

in September this year. As far as I know, our colleagues from Viblast will be at the

exhibition. So we look to the future with optimism.

Based on the proposed principles of optimization of multimedia data

exchange methods in the screen sharing application, a peer-to-peer architecture of

direct audio and video transmission between the client parts was developed,

presented in the next section. The process of forming client web pages and

establishing communication with the server via WebSocket Protocol is described.

The next section discusses the developed algorithms for establishing connections

between clients using the WebRTC Protocol. Modern approaches to the

development of communication protocols between different multichannel devices

and an overview of advanced network technologies are presented.

2 Practical realization of the project

2.1 Formulation of the problem

The problem of audio and video data transmission in peer - to-peer web video

conferencing applications is considered. When multiple client and server parts of a

video conferencing application communicate with each other, the WebRTC

Protocol can cause partial or complete loss of signal data that prevents clients from

connecting. The proposed architecture of transmission and storage of "signal" data

on the server provides buffering and subsequent processing of "signal" data,

eliminating their loss and maintaining interaction between groups of clients.

For the formal description of the problem of synthesis of architecture of peer-

to-peer multi-user video conferencing systems, a number of possible types of

architectures are introduced A   A ,   ST , as which the architecture of the

client part is distinguished ACLIENT, the architecture of the backend ASERVER and the

architecture of data exchange AEXCHANGE. To connect these sets with each other, we

introduce a system dynamic alternative multigraph of the following form:

A
t = Xt

, Ft
 Zt

, (1)

where  — index, characterizing type of video conferencing application

architecture,  = {1,2,3} — multiple indexes corresponding to the

client, server and data exchange architecture, respectively;

tT - many moments of time;

 15

X t
{xt ,lI  L} - many elements included in the architecture A

t at

time t ;

F
t = { f t

<,l,l’>,l,l’  L } - set of arcs of graph type A
t reflecting the

relationship between its elements at time t;

Z
t = { f t

<,l,l’>,l,l’  L } - the set of values of the parameters that

quantitatively characterize the relationship of the corresponding

elements of the graph.

Let's set the set of allowed operations of displaying the above graphs on each

other:

M t<,’>: Z
t F’

t (2)

as well as the operation of the composition of these maps:

M t<,’> = M t<,1>, M t<1,2>, … , M t<’,’>

then a lot of architectural state can be defined as a subset of the Cartesian

product of sets of elements on which the corresponding architecture of the video

conferencing application is built:

𝑆𝛿 ⊆ 𝑋1
𝑡 × 𝑋2

𝑡 × 𝑋3
𝑡 ,  = 1,…,K

Many many architectural states of a video conferencing application will be

written in the following way:

S = {S} = {S1,…,SK}.

We introduce a set of valid operations to map many architectural states of a

video conferencing application onto each other:

Пt
<,’>: S  S’.

In this case we assume that every multi-architecture application state of the

video conference is set as a result of the composition operation corresponding graph

describing each type of architecture.

All possible data changes are described by action types TypeA, which are

predetermined by the developer. To use an action, you must call the FA function of

the action which will send a message S to the storage change module MSC. The sent

message S must contain the type of action TypeA and a new information I, intended

for storage MSS. One of the main algorithms of this module MSS is the data change

algorithm in the state store that is implemented in the storage change module MSC.

The change module storage MSC provides information processing I from module

MA, and action creates a new state data StateD for warehouse. It is important to note

that the MSC storage state change module should create a new Data set, but not

modify the old data. This limitation is due to the fact that the video conferencing

application should store intermediate states that are easy to monitor and debug when

 16

developing and running a video conferencing application. As a result, the storage

change module MSC specifies how the StateA of the video conferencing application

should change in response to a specific action that occurred in the application.

2.2 The architecture of the interaction of the modules of the web

application video conferencing

The architecture AEXCHANGE ( = 3), presented in figure 2.3, prevents loss of

"signal" data when three or more video conferencing participants are connected.

Basic structural elements X3
t of the architecture AEXCHANGE are: 1 – client part of the

application; 2 – the server part of the application; 3 - block of data transfer

protocols. The client part is divided into two independent components — the user's

device and the web page. The user device in the app is required to create audio and

video streams from the camera and microphone connected to or being part of the

device.

Fig. 2.1. Developed architecture for data exchange in the application of video

conferencing

The client side web page of the application consists of classes written in the

JavaScript programming language that are required to create connections to the

server and other clients through various protocols and data processing. CSS and

HTML tools are used to build a graphical interface, display data, and manage the

client side of the application. The JavaScript tools used in the video chat web page

include three different types of instructions that allow you to organize data transfer

over three protocols: WebRTC, WebSocket, and HTTP. JavaScript tools are also

used to capture and process data streams from the microphone and video camera.

Web-page

...

Node.js

... Server

API

UserN
Socket

HTTP WebSocket WebRTC

Ajax Socket Peer

JavaScript

Webcam

Microphone

Device

 User1

Database

HTML

CSS

 17

The next main element of the application architecture is the server part. It

performs several different functions: formation of the client part of the application;

registration of the client; authorization of the client; exchange of "signal" data

between clients; creation of chat rooms and work with the database. The server

itself runs on the Node platform.js, which translates JavaScript into machine code

and has the same asynchronous architecture as the client side developed by the

JavaScript programming language. The MongoDB database, located in the back end

of the application, has a no. SQL architecture that is suitable to simplify the

implementation of the back end and allows you to quickly adapt its data to changes

in the structure of the application. Interaction with the MongoDB database is

performed using JavaScript and a special driver library designed for this database.

The third element of the architecture shown in figure 2.1, consists of

protocols — HTTP, WebSocket, and WebRTC. These protocols provide data

exchange at various stages of application operation, with their help creating

connection of client parts via WebRTC Protocol for streaming audio and video data

between them. There are problems when creating a connection that originate from

the asynchronous application architecture and the WebRTC Protocol that does not

provide for the standard implementation of multiple client connections. It is also

necessary to note the complexity of the procedure for establishing communication

between clients using the WebRTC Protocol, which requires the exchange of

"signal" data between them and requires special attention when creating a

connection.

In this work, the solution described by the aforementioned problems of loss

of signal data with multiple connecting clients’ videoconferencing with the

introduction of new algorithms of interaction of client and server parts and using

various protocols to exchange information. This architecture allows you to create a

full peer-to-peer video conferencing application that can work in group video chat

mode. The following section describes the main protocols and software tools used

to create a client web page and its operation during a video conference.

2.3 Algorithms for establishing connections between clients via WebRTC

Protocol

To clearly understand the problem of "signal" loss and proposed in this study

software-algorithmic data solutions, first consider the main stages of the functioning

of the client and server parts of the developed video conferencing application.

The client part of the application begins with the formation of a web page of

registration or authorization, allowing the client to communicate with the server by

sending or receiving data via HTTP Protocol.

HTTP is an application layer Protocol for arbitrary data transfer. The Protocol

is used in the application to send the client a graphical interface in the form of

HTML and CSS data, the logic of the client part of the application written in the

programming language JavaScript, as well as to exchange client data with the server

when registering and authorizing the client using Ajax technology, which allows

you to exchange data with the server.

 18

Customer authorization allows the user to access personal data and the video

conferencing page. To authorize the user enters data in the form "login" and

"password". Then the data is collected from the forms and sent to the server using

Ajax technology. Then the server processes the received data: checks for

compliance with a certain set of characters and for exceeding the maximum size of

the data in the request, searches for a login-password pair in the database. If all

operations are successful, the server will form a video conferencing page with user

data and send it to the HTTP client. If the data does not meet certain requirements

or if an error occurs, the server will send an information message to the client,

which helps to resolve the situation using the HTTP Protocol.

Client registration, as well as authorization, involves filling out forms with

data and sending them to the server via HTTP. Then the server processes the data

sent by the client. In case of a positive result of processing, the server will store all

the data in the database, will automatically register the client, will form and send a

response to the client's request in the form of a video conferencing page with user

data. In case of incorrect data, the server will return an error notification to the

client via HTTP.

Thus, the application uses the HTTP Protocol for reliable transmission of

HTML, CSS and JavaScript data between the server and the client. The advantage

of using this Protocol is that it is specifically designed to transmit web pages and

their logic, and is well supported by all existing browsers. The HTTP Protocol has a

set of standard commands, among which there are two main commands: "GET" and

"POST", respectively, which allow you to make requests for pages to be issued to

the server and a request for exchange of different types of data between the server

and the client when authorizing or registering the client.

After the client receives a web page for video conferencing by means of

JavaScript, a socket is created on the client, which establishes a connection to the

server using the WebSocket Protocol. WebSocket is a full-duplex communication

Protocol over a TCP connection designed to exchange messages between the

browser and the web server in real time. The WebSocket Protocol opens sockets on

the client and server, allowing any type of data to be exchanged. In case of a

successful connection via WebSocket Protocol, the server will create a socket with

the client data and start its authorization: will try to get http cookie client data that

stores the necessary information for authorization, will unpack the cookie data, will

try to load from the database session corresponding to the data from the http cookie,

on the loaded session will determine the user belonging to the session, bind the user

data to the socket, will create a unique number for the socket that will generate and

send the "connection" event inside the server. If one of the socket authorization

actions generates an error, the socket on the server will be automatically

disconnected and removed, and the client socket will receive a connection

termination message.

Event "connection" that occurs on the server binds to the socket that is

created on the server — the "listeners" of the events that are sent by the client

socket. When the client socket is created, it forms a set of "listeners" for events sent

by the server socket. Thus, the connection between the client and the server is

 19

established through the WebSocket Protocol, which allows them to quickly

exchange messages of various types that do not require their identification, since

there is a separate "listener" for each type of message.

This Protocol allows to achieve high speed of information exchange and

reduce the load on the client and server due to the absence of costs for identification

of data flows. WebSocket Protocol plays an important role in the developed video

conferencing application — it is engaged in the transmission of "signal" data of

client browsers that allow you to create a connection using the WebRTC Protocol.

Thus, this Protocol is the basis for creating a connection using the WebRTC

Protocol and simplifies the process of transferring the data necessary for a peering

connection.

After establishing a connection with the server via the WebSocket Protocol,

the user needs to turn on the video camera and microphone to make video calls and

give access to them to the browser. The browser that has access to the camera and

microphone of the user, using JavaScript tools, will form media streams of data

from connected devices. The received audio and video streams can be transmitted

via WebRTC Protocol between the client browsers directly. WebRTC - Internet

Protocol designed to organize streaming data between browsers or other

applications that support it by point-to-point technology. To connect two clients

using WebRTC, you need the following set of JavaScript instructions: create a peer

for each of the clients; the appoint of one of its clients as a "calling"; the appoint of

another client as "answering"; the formation of a "signaling" data; exchange of

signaling data; finishing the connection establishment.

For the transmission of signaling data between clients a server and the

WebSocket Protocol are used. Previously created sockets in the client part of the

application allow you to transfer "signal" data on certain channels to the server, the

server in turn transmits this data to other clients for which they are intended. To

connect clients via WebRTC Protocol three types of data are required: "call offer",

"call answer" and "candidate". "Call offer" is used to initialize the WebRTC

session, it is formed on one of the clients and is sent to the server using WebSocket

Protocol, the server in turn sends this message to the "responding" client. "Call

offer" is in the format of SDP (Session Description Protocol). An SDP message sent

from one node to another that can specify: destination addresses that serve as

multicasting media streams, UDP port numbers for the sender and receiver, media

formats (such as codecs) that are used during the session, start and stop times. The

SDP message is used for broadcast sessions, such as television, radio programs, or

video conferences. The client who received the "call offer" will generate and send a

response via WebSocket Protocol in the form of "call answer" data, which also have

the SDP format. As soon as the client who sent the "call offer" receives the SDP

message of "call answer" type, the "candidate" type data will be exchanged between

the clients via WebSocket Protocol. Data of type "candidate" has the format ICE

(Interactive Connectivity Establishment) Candidate. Creating an interactive

connection (ICE) is a method used in computer networks that includes network

address transfer(NATs) in Internet applications such as ip telephony (VoIP), peer —

to-peer communications (peer-to-peer communications) applications, video

 20

applications, instant messaging (instant messaging) applications, and other

interactive media applications. Data type of "candidate" is used for clients’

connection, setting the path between them, by which media streams will be

transmitted. If the "candidate" type data exchange is successful, each client will

open a channel to transfer various types of data via WebRTC Protocol, including

audio and video streams.

The WebRTC Protocol has features that create difficulties when connecting

users: to create a connection between clients, you need to perform a "handshake"

operation, which consists of exchanging different types of "signal" data between

browsers, but at the same time the client can establish only one connection using the

WebRTC Protocol.

This specificity of the Protocol entails a number of problems in the creation

of a full video conferencing. Problems arise due to the asynchronous architecture of

the application in connection situations: a single client with a set, a set with one, a

set with a set. Such situations result in a violation of the connection algorithm —

complete or partial loss of data required to establish communication between

clients. To solve this problem, several additional approaches were proposed to build

the architecture of data exchange in the application: buffering the "signal" data of

the WebRTC Protocol on the client and the server; combining the sockets connected

to the clients in the "room" on the server. By doing this a "room" isolates set of

sockets from each other. In this way, "rooms" isolate groups of sockets from each

other, helping to distribute data only within certain groups. Such approaches help to

avoid data loss, create all necessary connections between clients and manage client

connection processes at different stages of the application. Next, we consider the

algorithms based on the developed approaches that allow you to create a connection

using the WebRTC Protocol, to control the processing "signal" data, buffer "signal"

data and group client sockets into separate "rooms".

The algorithm shown in figure 2.2 describes the stage of connecting clients

before the formation of "signal" data. First, the "calling" client submits a request to

the server to connect to the "responding" client via WebSocket Protocol. Next, the

server searches for the "responding" client among the connected. If there is no

client, the server will end the call of the "calling" client, if "responsible" client was

found, he sent the connection request to the WebSocket Protocol. The "responding"

client forms and sends a response to the request. If the answer is negative, the server

ends the call to the "calling" client. In case of a positive response, the server will

receive the socket id of the "calling" and "responding" clients, the socket id will

find the "room" in which the sockets are currently located. After this algorithm is

completed, socket buffers are created and processed on the server by the algorithm

shown in figure 2.3.

After the "room" where the sockets of each client are located is formed, the

algorithm presented in figure 2.3 begins to work. First, the socket is extracted from

the" room "of the" responding " client, a buffer is created for it to store the sockets

waiting for the WebRTC connection. Then, the socket from the "room" of the

"responding" client adds to the existing buffer — a socket taken from the "room" of

the "calling" client. If the socket taken from the "calling" client's "room" was not

 21

the last one, the operation of extracting the socket from the "calling" client's "room"

and adding it to the buffer is repeated with the next socket from this room. After the

last socket from the "room" of the "calling" client is taken, the socket from the

"room" of the "responding" client is disconnected from its "room" and added to the

"calling" client's room.

Fig. 2.2. The algorithm of preparation of the client before generating the signal data

Next, the socket buffer processing function is called, which will execute a

request to generate signal data for all clients that are in the queue of this buffer. At

the end of the algorithm, the "room" of the "responding" client is checked for

emptiness. If the "room" is not empty, the algorithm will repeat all actions from the

beginning, otherwise the algorithm is considered complete. As you can see, this

algorithm adds to the "room" of the "calling" client of the "room" of the

"responding" client, and each time you access the "room" of the "calling "client in

this algorithm, the "room" should increase. But this is not the case, since before the

beginning of the algorithm there is a duplication of all users of the "room," "the

calling" client in a separate array. Thus, the algorithm works correctly and every

time it uses not the main "room", but a pre-prepared array.

Fig. 2.3. The algorithm for allocating sockets and processing of the buffers on the

server

The algorithm, shown in figure 2.4, is shared for processing requests from

servers on the formation of data signal "call offer", or for processing received from

 22

another client signal data "call answer". There are two separate buffers for each data

type in the video conferencing client application.

The incoming request or "signal" data is first added to its corresponding

buffer. Then, both buffers are checked for processing one of them at the moment. If

one of the buffers is occupied by a processing function, the algorithm terminates

and new data in the buffer will be processed later. If none of the buffers are

occupied, they are checked for emptiness. If both buffers are empty, the WebSocket

client will notify the server that it is ready to receive new data to establish a

connection with other clients. If any of the buffers contains data, the first data in the

queue will be retrieved and processed accordingly to establish a connection. Once

the connection is established, the algorithm continues from the buffer's busy polling

location.

It is worth noting that" signal "data of the" candidate " type has no special

buffers for storing it either on the client or on the server, as processing occurs

immediately as soon as the client receives them. During the processing of" signal

"data of type" candidate", buffers belonging to the" call answer "or" call offer " data

type, depending on the processing situation, continue to be occupied by the

processing function. Thus, the rest of the data type "call answer" or "call offer"

continues to be added to the buffers, without breaking the algorithm of client

connection via WebRTC Protocol.

The three above algorithms make up one of the main parts of the application,

which creates video conferencing with other users via the webrtc peer-to-peer

Protocol. The algorithms allow to control asynchronous architecture of client and

server parts of the application, processing data as necessary, preventing the

occurrence of situations of data mixing and interruption of running connections via

WebRTC Protocol. Therefore, the application provides the ability to create group

video conferences and monitor their status using the "rooms" clients on the server.

2.4 Acquiring Audio and Video with getUserMedia

The Media Capture and Streams W3C specification defines a set of new

JavaScript APIs that enable the application to request audio and video streams from

the platform, in addition to a set of APIs to manipulate and process the acquired

media streams. The MediaStream object (Figure 2.5) is actually the main interface

that enables all of this functionality.

 23

Figure 2.5 – MediaStream carries one or more synchronized tracks

• The MediaStream object consists of one or perhaps more individual tracks

(MediaStreamTrack).

• Tracks within a MediaStream object are actually synchronized with each other.

• The input source can be a physical device, like a microphone, webcam or even a

remote or local file from the user 's hard drive or perhaps a remote network peer.

• The output of a MediaStream can be delivered to one or even more destinations: a

local video or perhaps audio element, JavaScript code for post processing, or

perhaps a remote peer.

A MediaStream object represents a real time media stream and allows the

application code to acquire data, manipulate individual tracks, and specify outputs.

All of the audio and video processing, such as noise cancellation, image

enhancement, equalization, and more are easily handled by the audio and video

engines.

Nevertheless, the functions of the acquired media stream are actually

constrained by the capabilities of the input source: a microphone is able to emit only

an audio stream, and some webcams are able to produce higher resolution video

streams than others. As a result, when requesting media streams in the browser, the

getUserMedia() API allows us to specify a list of optional and mandatory

constraints (Figure 2.6) to fit the requirements of the application:

 24

Figure 2.6 – List of constraints

1. HTML video output element

2. Request a mandatory audio track

3. Request a mandatory video track

4. List of mandatory constraints for video track

5. Array of optional constraints for video track

6. Request audio and video streams from the browser

7. Callback function to process acquired MediaStream

This example illustrates among the more elaborate scenarios: we're requesting

audio and video tracks, and we're specifying both the minimum resolution and type

of camera that has to be used, and a list of optional constraints for 720p Hd video!

The getUserMedia() API is actually responsible for requesting a chance to access

the microphone and camera from the user, and acquiring the streams that match the

specified constraints - that is the whirlwind tour.

 25

The provided APIs also enable the application to manipulate individual tracks,

modify constraints, clone them, and more. Additionally, once the stream is actually

acquired, we are able to feed it right into an assortment of other browser APIs:

• Web Audio API enables processing of audio in the internet browser.

• Canvas API enables post-processing and capture of individual video frames.

• CSS3 and WebGL APIs is able to apply a variety of 2D/3D effects on the output

stream.

To make a long story short, getUserMedia() is actually a simple API to acquire

audio and video streams from the underlying platform. The media is automatically

optimized, encoded, and decoded by the WebRTC audio and video engines and it is

then routed to one or perhaps more outputs. With that, we're halfway to building a

real time teleconferencing application - we simply have to route the data to a peer!

2.5 Real-Time Network Transport

Real-time communication is time sensitive; that might come as no surprise.

As a result, audio and video streaming applications are actually supposed to tolerate

intermittent packet loss: the audio and video codecs are able to fill in small data

gaps, often with little effect on the output quality. Similarly, applications must

implement their own logic to recover from lost or perhaps delayed packets carrying

some other types of application data. Timeliness and low latency can be a little

more significant compared to reliability.

The necessity for timeliness over reliability is actually the main reason why

the UDP protocol is actually a preferred transport for delivery of real time data.

TCP delivers a reliable, ordered stream of data: if an intermediate packet is actually

lost, then TCP buffers all the packets after it, waits for a retransmission, and then

delivers the stream in order to the application.

2.6 RTCPeerConnection API

Regardless of the various protocols involved in setting up and maintaining a

peer-to-peer connection, the application API exposed by the browser is fairly easy.

The RTCPeerConnectioninterface (Figure 2.7) is actually responsible for managing

the total life cycle of each peer-to-peer connection.

 26

Figure 2.7 – RTCPeerConnection API

• RTCPeerConnection manages the entire ICE workflow for NAT traversal.

• RTCPeerConnection transmits automated (STUN) keepalives among peers.

• RTCPeerConnection keeps an eye on local streams.

• RTCPeerConnection keeps track of remote streams.

• RTCPeerConnection triggers automatic stream renegotiation as needed.

• RTCPeerConnection provides necessary APIs to generate the connection offer,

accept the answer, lets us query the connection for the current state of its, and much

more.

2.7 Establishing a Peer-to-Peer Connection

Initiating a peer-to-peer connection needs much more work than just opening

an XHR, EventSource, or perhaps a new WebSocket session: the latter 3 rely on a

well-defined HTTP handshake mechanism to negotiate the parameters of the

connection, and all 3 implicitly assume that the destination server is actually

reachable by the client - i.e., the server has a publicly routable IP address or perhaps

the client and server are actually located on the same internal network.

 27

By comparison, it's very likely that the two WebRTC peers are actually

within their own, distinct private networks and behind one or even more levels of

NATs. As a result, neither peer is directly reachable by the other. In order to begin a

session, we should first gather the possible IP and port candidates for each peer,

traverse the NATs, and then run the connectivity checks to find the ones that work,

and even then, you will find no guarantees that we'll succeed.

Nevertheless, while NAT traversal is actually an issue we should deal with,

we might have gotten ahead of ourselves already. When we open an HTTP

connection to a server, there's an implicit assumption that the server is actually

listening for the handshake of ours; it may want to decline it, but it's nevertheless

always listening for new connections. Unfortunately, the same cannot be said about

a remote peer: the peer may be unreachable or offline, busy, or perhaps simply not

interested in initiating a connection with the other party.

As a result, in order to build a successful peer-to-peer connection, we must

first solve several additional problems:

1. We must notify the other peer of the intent to open a peer-to-peer

connection, such it knows to start listening for incoming packets.

2. We must identify potential routing paths for the peer-to-peer connection on

each side of the connection and relay the info between peers.

3. We must exchange the required info about the parameters of the various

media and data streams - protocols, encodings used, and so on.

The best part is the fact that WebRTC solves one of the issues on our behalf:

the built in ICE protocol performs the necessary routing and connectivity checks.

Nevertheless, the delivery of notifications (signaling initial session negotiation and)

is actually left to the application.

2.7 Multiparty Architectures

One single peer-to-peer connection with bidirectional Hd media streams

could easily use up a considerable portion of users' bandwidth. Due to this fact,

multiparty applications should carefully think about the architecture (Figure 2.8) of

the way in which the individual streams are actually aggregated and distributed

between the peers.

 28

Figure 2.8 – Distribution architecture for an N-way call

One-to-one connections are actually not hard to control and deploy: the peers

talk straight to one another and no additional optimization is needed. Nevertheless,

extending the identical method to a N way call, where each peer is actually

responsible for connecting to every other party (a mesh network) would result in

connections for each peer, in addition to a total of connections! If bandwidth is

actually at a premium, since it usually is a result of the much lower uplink speeds,

then this architecture type will immediately saturate most users' links with only a

couple of participants.

While mesh networks are actually not hard to set up, they're usually

inefficient for multiparty systems. To manage this, an alternative approach is

usually to use a "star" topology instead, where the individual peers connect to a

"supernode," which is then accountable for distributing the streams to all connected

parties. This way only one peer has to pay the expense of handling and distributing

streams, and everybody else talks directly to the supernode.

A supernode can be another peer, or perhaps it is often a dedicated service

specially optimized for processing and distributing real time data; which strategy is

much more appropriate depends on the application and the context. In probably the

simplest case, the initiator is able to act as a supernode - simple, and this may just

work. An even better strategy might be to pick the peer with probably the best

available throughput, but that also requires additional "election" and signaling

mechanisms.

Lastly, the supernode might be a dedicated and also a third-party service.

WebRTC allows peer-to-peer communication, but this doesn't mean that there's no

room for centralized infrastructure! Individual peers are able to establish peer

connections with a proxy server and yet get the advantage of both the WebRTC

transport infrastructure as well as the additional services provided by the server.

 29

2.8 Listing of program

 <title>WebRTC screen share demo</title>

 <style>

 h1, h2, h3 {

 background: rgb(238, 238, 238);

 border-bottom-width: 1px;

 display: block;

 margin-top: 0;

 padding: .2em;

 text-align: center;

 }

 .left-video {

 width: 512px;

 height: 384px;

 border: 1px solid black;

 }

 .right-video {

 width: 512px;

 height: 384px;

 border: 1px solid black;

 }

 .left-section {

 float: left;

 }

 .right-section {

 float: right;

 }

 .buttons-left-section {

 position: absolute;

 float: left;

 }

 .buttons-right-section {

 position: absolute;

 right: 6px;

 }

 </style>

 So this code below refers to css part of the program which answers for screen

sharing windows buttons on the bottom of it and overall look of the program in the

browser.

 Cascading Style Sheets (CSS) is actually a style sheet language used for

describing the presentation of a document created in a markup language as HTML

CSS is actually a cornerstone technology of the world Wide Web, alongside

JavaScript and HTML.

 30

CSS was created to allow the separation of content and presentation, such as

layout, colors, and fonts. This separation is able to improve content accessibility,

provide control and flexibility more in the specification of presentation

characteristics, enable multiple web pages to share formatting by specifying the

relevant CSS in a separate,css file, and reduce repetition and complexity in the

structural content.

 <h1>Screen share using WebRTC</h1>

 <h2>Use Chrome or Firefox, connect two browsers.

 Firefox allows screen, window and application share, Chrome only alows screen

share when not an extension.</h2>

 <div class="left-section">

 <h3>Local Screen</h3>

 <video class="left-video" id="localvideo" autoplay controls></video>

 <div class="buttons-left-section">

 <button type="button" onclick="startMedia();">Start media</button>

 <button type="button" onclick="stopMedia();">Stop media</button>

 <select id="selector" onchange="selectChanged()" disabled>

 <option value="screen">Screen</option>

 <option value="window">Window</option>

 <option value="application">Application</option>

 </select>

 </div>

 </div>

 <div class="right-section">

 <h3>Remote Screen</h3>

 <video class="right-video" id="remotevideo" autoplay controls></video>

 <div class="buttons-right-section">

 <button type="button" onclick="share();">Share</button>

 <button type="button" onclick="endShare();">End Share</button>

 </div>

 </div>

 This part of the code answers for title text on the web page and which

function should it operate when user click to button. It gives 3 options of screen

sharing: the whole screen, the chosen window or application. Also there is 2 more

buttons answering for the start of streaming “share” and its finish “end share”.

 var hostArray = window.location.host.split(':');

 var serverLoc = 'wss://' + hostArray[0] + ':443/'

 var socket = new WebSocket(serverLoc);

var localvid = document.getElementById('localvideo');

 var remotevid = document.getElementById('remotevideo');

 var shareSelector = document.getElementById('selector');

 var localStream = null;

 31

 var pc = null;

 var mediaFlowing = false;

 var useH264 = true;

 This part of the code answers for server detection from URL.

var userAgent = navigator.userAgent.toLowerCase();

var browserM =

userAgent.match(/(opera|chrome|safari|firefox|msie)[\/\s]*([\d\.]+)/);

 var browser = navigator.appName.toLowerCase();

 if (browserM)

 browser = browserM[1];

 var isChrome = (browser === "chrome");

 var isFirefox = (browser === "firefox");

 This part dedicated to browser detection.

var screen_constraints = null;

if (isChrome) {

 screen_constraints = {

 video: {

 mandatory: {

 chromeMediaSource: 'screen',

 maxWidth: screen.width,

 maxHeight: screen.height,

 minFrameRate: 1,

 maxFrameRate: 5

 },

 optional: []

 }};

 } else {

 selector.disabled = false;

 screen_constraints = {

 video: {

 mediaSource: "screen"

 }

 };

 }

 var offerAnswerConstraints = {

 optional: [],

 mandatory: {

 offerToReceiveAudio: true,

 offerToReceiveVideo: true

 }

 };

 This is the constraints of the program. Although this's a web centric world,

people's conceptions of design are likely to be framed by print design, where a

 32

billboard is always the same size, a newspaper ad is always the same size, and a

magazine cover is actually the same size regardless of who's viewing it, or perhaps

exactly where they're reading through the magazine.

Another constraint of site design is actually that unlike print designs, where

the viewing area of any design is actually fixed, web users can (and do) zoom in or

perhaps out as they interact with a web page, changing the size of images and text.

And, by the way, different browsing environments handle zoom differently - some

enlarge images as text is actually enlarged, and other times enlarging text does not

affect other page elements.

function selectChanged() {

 var value = shareSelector.options[shareSelector.selectedIndex].value;

 if (value == "window") {

 screen_constraints = {

 video: {

 mediaSource: "window"

 }

 };

 } else if (value == "screen") {

 screen_constraints = {

 video: {

 mediaSource: "screen"

 }

 };

 } else if (value == "application") {

 screen_constraints = {

 video: {

 mediaSource: "application"

 }

 };

 }

 }

So this part explains how function of choosing which window the user want

to share is working.

function startMedia() {

var promisifiedOldGUM = function(constraints, successCallback,

errorCallback) {

// First get ahold of getUserMedia, if present

 var getUserMedia = (navigator.getUserMedia ||

 navigator.webkitGetUserMedia ||

 navigator.mozGetUserMedia);

// Some browsers just don't implement it - return a rejected promise with an

error

 33

 // to keep a consistent interface

 if(!getUserMedia) {

 return Promise.reject(new Error('getUserMedia is not implemented in

this browser'));

 }

// Otherwise, wrap the call to the old navigator.getUserMedia with a Promise

 return new Promise(function(successCallback, errorCallback) {

 getUserMedia.call(navigator, constraints, successCallback,

errorCallback);

 });

 }

// Older browsers might not implement mediaDevices at all, so we set an

empty object first

 if(navigator.mediaDevices === undefined) {

 navigator.mediaDevices = {};

 }

// Some browsers partially implement mediaDevices. We can't just assign an

object

 // with getUserMedia as it would overwrite existing properties.

 // Here, we will just add the getUserMedia property if it's missing.

 if(navigator.mediaDevices.getUserMedia === undefined) {

 navigator.mediaDevices.getUserMedia = promisifiedOldGUM;

 }

navigator.mediaDevices.getUserMedia(screen_constraints)

 .then(function(stream) {

 localStream = stream;

 if (localvid.mozSrcObject) {

 localvid.mozSrcObject = stream;

 localvid.play();

 } else {

 try {

 localvid.src = window.URL.createObjectURL(stream);

 localvid.play();

 } catch(e) {

 console.log("Error setting video src: ", e);

 }

 }

 })

 .catch(function(err) {

 console.log(err.name + ": " + err.message);

 if (location.protocol === 'http:') {

 alert('Please test this WebRTC experiment on HTTPS.');

 } else {

 alert('Screen capturing is either denied or not supported. Have you

enabled the appropriate flag? see README.md');

 34

 }

 console.error(e);

 });

 }

function onerror(e) {

 if (location.protocol === 'http:') {

 alert('Please test using HTTPS.');

 } else {

 alert('Screen capturing is either denied or not supported. Have you

enabled the appropriate flag? see README.md');

 }

 console.error(e);

 }

So this is the main part of the program, in which we can clearly see that how

WebRTC protocol involved into it by using getUserMedia function. The

MediaStream interface represents a stream of media content. A stream consists of

several tracks such as video or perhaps audio tracks. Each track is actually specified

as an instance of MediaStreamTrack. You is able to obtain a MediaStream object

either by making use of the constructor or perhaps by calling

MediaDevices.getUserMedia().

Some user agents subclass this interface to provide more accurate info or

perhaps functionality, like in CanvasCaptureMediaStream.

Each MediaStream has an input, which might be a MediaStream generated by

navigator.getUserMedia(), and an output, which might be passed to a video element

or an RTCPeerConnection.

function stopMedia() {

 localvid.src = "";

 localStream.getVideoTracks()[0].stop();

 }

 function useH264Codec(sdp) {

 var isFirefox = typeof InstallTrigger !== 'undefined';

 if (isFirefox)

 updated_sdp = sdp.replace("m=video 9 UDP/TLS/RTP/SAVPF 120 126

97\r\n","m=video 9 UDP/TLS/RTP/SAVPF 126 120 97\r\n");

 else

 updated_sdp = sdp.replace("m=video 9 UDP/TLS/RTP/SAVPF 100 101

107 116 117 96 97 99 98\r\n","m=video 9 UDP/TLS/RTP/SAVPF 107 101 100 116

117 96 97 99 98\r\n");

 return updated_sdp;

 }

This code above answers for terminating the local video stream or screen

sharing.

 35

function setLocalDescAndSendMessageOffer(sessionDescription) {

 if (useH264) {

 // use H264 video codec in offer every time

 sessionDescription.sdp = useH264Codec(sessionDescription.sdp);

 }

 pc.setLocalDescription(sessionDescription);

 console.log("Sending: SDP");

 console.log(sessionDescription);

 socket.send(JSON.stringify({

 "messageType": "offer",

 "peerDescription": sessionDescription

 }));

 }

In this part of code SDP packets are sent over web socket.

 function setLocalDescAndSendMessageAnswer(sessionDescription) {

 if (useH264) {

 // use H264 video codec in offer every time

 sessionDescription.sdp = useH264Codec(sessionDescription.sdp);

 }

 pc.setLocalDescription(sessionDescription);

 console.log("Sending: SDP");

 console.log(sessionDescription);

 socket.send(JSON.stringify({

 "messageType": "answer",

 "peerDescription": sessionDescription

 }));

 }

 function onCreateOfferFailed() {

 console.log("Create Offer failed");

 }

This is the continuation of sending SDP packets over web socket via

WebRTC protocol.

function share() {

 if (!mediaFlowing && localStream) {

 createPeerConnection();

 mediaFlowing = true;

 36

 pc.createOffer(setLocalDescAndSendMessageOffer,

onCreateOfferFailed, offerAnswerConstraints);

 } else {

 alert("Local stream not running yet or media still flowing");

 }

 }

As we can understand in this section of code there is a function which turns

on when you press the ‘start share’ button.

function endShare() {

 console.log("end share");

 socket.send(JSON.stringify({type: "bye"}));

 stop();

 }

function stop() {

 if (pc) {

 pc.close();

 }

 pc = null;

 remotevid.src = null;

 mediaFlowing = false;

 }

function onCreateAnswerFailed(error) {

 console.log("Create Answer failed: ", error);

 }

socket.addEventListener("message", onWebSocketMessage, false);

And this section of code is vice-versa answers for ‘end share’ button.

 function onWebSocketMessage(evt) {

 var message = JSON.parse(evt.data);

 if (message.messageType === 'offer') {

 console.log("Received offer...")

 if (!mediaFlowing) {

 createPeerConnection();

 mediaFlowing = true;

 }

 console.log('Creating remote session description...');

var remoteDescription = message.peerDescription;

 var RTCSessionDescription = window.RTCSessionDescription ||

window.webkitRTCSessionDescription || window.RTCSessionDescription;

 pc.setRemoteDescription(new

RTCSessionDescription(remoteDescription), function() {

 console.log('Sending answer...');

 37

 pc.createAnswer(setLocalDescAndSendMessageAnswer,

onCreateAnswerFailed);

 }, function() {

 console.log('Error setting remote description');

 });

} else if (message.messageType === 'answer' && mediaFlowing) {

 console.log('Received answer...');

 console.log('Setting remote session description...');

 var remoteDescription = message.peerDescription;

 var RTCSessionDescription = window.RTCSessionDescription ||

window.webkitRTCSessionDescription || window.RTCSessionDescription;

 pc.setRemoteDescription(new

RTCSessionDescription(remoteDescription));

} else if (message.messageType === 'iceCandidate' && mediaFlowing) {

 console.log('Received ICE candidate...');

 var RTCIceCandidate = window.RTCIceCandidate ||

window.webkitRTCIceCandidate || window.RTCIceCandidate;

 var candidate = new

RTCIceCandidate({sdpMLineIndex:message.candidate.sdpMLineIndex,

sdpMid:message.candidate.sdpMid, candidate:message.candidate.candidate});

 console.log(candidate);

 pc.addIceCandidate(candidate);

 } else if (message.type === 'bye' && mediaFlowing) {

 console.log("Received bye");

 stop();

 }

 }

 function createPeerConnection() {

 console.log("Creating peer connection");

 RTCPeerConnection = window.webkitRTCPeerConnection ||

window.RTCPeerConnection;

 var pc_config = {"iceServers":[]};

 try {

 pc = new RTCPeerConnection(pc_config);

 } catch (e) {

 console.log("Failed to create PeerConnection, exception: " + e.message);

 }

 // send any ice candidates to the other peer

 pc.onicecandidate = function (evt) {

 if (evt.candidate) {

 console.log('Sending ICE candidate...');

 console.log(evt.candidate);

 socket.send(JSON.stringify({

 38

 "messageType": "iceCandidate",

 "candidate": evt.candidate

 }));

 } else {

 console.log("End of candidates.");

 }

 };

 console.log('Adding local stream...');

 pc.addStream(localStream);

 pc.addEventListener("addstream", onRemoteStreamAdded, false);

 pc.addEventListener("removestream", onRemoteStreamRemoved, false)

 // when remote adds a stream, hand it on to the local video element

 function onRemoteStreamAdded(event) {

 console.log("Added remote stream");

 remotevid.src = window.URL.createObjectURL(event.stream);

 }

 // when remote removes a stream, remove it from the local video element

 function onRemoteStreamRemoved(event) {

 console.log("Remove remote stream");

 remotevid.src = "";

 }

 }

 All this big section of the code is taking care of process messages that are

coming from web socket during our WebRTC peer-to-peer screen sharing session.

Mentioned above part of the code was related to WebRTC session itself. But

that’s not all. We have another part of the program binded to Javascript

programming language. And it is responsible for what is happening in the node.js

part of the program. Node.js is the server part.

var WebSocketServer = require('websocket').server;

var https = require('https');

var fs = require('fs');

var clients = [];

var options = {

 key: fs.readFileSync('webrtcwwsocket-key.pem'),

 cert: fs.readFileSync('webrtcwwsocket-cert.pem'),

};

var server = https.createServer(options, function(request, response) {

 fs.readFile(__dirname + '/index.html',

 function (err, data) {

 39

 if (err) {

 response.writeHead(500);

 return response.end('Error loading index.html');

 }

 response.writeHead(200);

 response.end(data);

 });

});

server.listen(443, function() {

 console.log((new Date()) + " Server is listening on port 443");

});

// create the server

wsServer = new WebSocketServer({

 httpServer: server

});

function sendCallback(err) {

 if (err) console.error("send() error: " + err);

}

// This callback function is called every time someone

// tries to connect to the WebSocket server

wsServer.on('request', function(request) {

 console.log((new Date()) + ' Connection from origin ' + request.origin +

'.');

 var connection = request.accept(null, request.origin);

 console.log(' Connection ' + connection.remoteAddress);

 clients.push(connection);

 // This is the most important callback for us, we'll handle

 // all messages from users here.

 connection.on('message', function(message) {

 if (message.type === 'utf8') {

 // process WebSocket message

 console.log((new Date()) + ' Received Message ' + message.utf8Data);

 // broadcast message to all connected clients

 clients.forEach(function (outputConnection) {

 if (outputConnection != connection) {

 outputConnection.send(message.utf8Data, sendCallback);

 }

 });

 }

 });

 40

 connection.on('close', function(connection) {

 // close user connection

 console.log((new Date()) + " Peer disconnected.");

 });

});

3. Life safety section

3.1 Assessment of the forthcoming physical and mental load at service of

the technical characteristic of the equipment of the workplace of the service

personnel

 This diploma project considered the development of applications for the

generation of business plans. Development is made on one laptop. In the room

under consideration is 1 employee-computer operator.

The working environment of the PC operator is a set of physical,

chemical, biological, socio-psychological and aesthetic environmental factors

affecting the operator.

A comprehensive assessment of the working environment factors is

carried out on the basis of the method of physiological classification of the severity

and intensity of work.

Table 3.1 — Categories of severity of work

Index of
categories
of severity
of work

Characteristic category of severity of work

I Activities, the presence of which the impact of unsafe and harmful

conditions leads to the development of the most complete

neighboring capital in almost strong people. Most of the physical

conditions of this presence is exacerbated, especially at the end of the

employee stages (replacement, weeks). There are typical

manufacturing predefined capital diazaborine, etc.

Work, the presence of which in consequence of extremely negative

circumstances of work at the end of the labor stage (replacement,

weeks) are created by the interaction, characteristic for the purpose of

painful multifunctional capital of the body in almost strong people,

disappearing from many employees after full entertainment. But

certain people have all the chances to switch to production and high-

class diseases.

II Work performed in particularly negative (dangerous) circumstances

of work. The presence of this painful interaction is formed very

rapidly, have all chances to have an irreparable appearance and are

often accompanied by serious violations of the functions of

 41

important organizations. Activities carried out in circumstances

where the maximum permissible concentration

(CONCENTRATION) and the maximum permissible degree (PDU)

of harmful and unsafe working conditions does not exceed the

conditions of regulatory industrial papers.

III The presence of this functionality does not break, declensions in

staying well-being, interfaced with high-class activism, does not

appear throughout the whole stage of the person's work.

IV The presence of this functionality does not break, declensions in

staying well-being, interfaced with high-class activism, does not

appear throughout the whole stage of the person's work.

V Activities, the presence of which the impact of unsafe and dangerous

harmful conditions leads to the development of the most complete

neighboring capital in almost strong people. Most of the physical

conditions of this presence is exacerbated, especially at the end of the

employee stages (replacement, weeks).

There are characteristic production predetermined capital of pre-

illness, etc.

The study of high-grade notch is carried out taking into account the

magnitude of the properties of health and loss of ability to work.

Factors of region PC operator close up to the optimization of factors:

The temperature of the atmosphere in the RM in the room in the years

warmed. In the production rooms, in which the activities of the computer and VT is

considered the main, must be guaranteed rational characteristics of the local

climate.

The temperature of the atmosphere is 20С.

The duration of the exposure conditions — 480 minutes.

On this basis 2 points are displayed.

The specific gravity of the impact of the condition in the length of the

replacement proletarians can be thought out according to the composition:

t = 480/480 = 1. (3.1)

The specific assessment of the indicator according to the formula 1 will be:

X4 = 2 x 1=2. (3.2)

Table 3.2 – Working environment factors

Working

environment

factors

Indicator Value of

indicator

Score factor

after

optimization

The

duration of

the factor

tpmin after

optimization

assessment

of the

specific

gravity of

the working

environment

 42

factor Xф

The

temperature of

the air in the

workplace, 0С:

warm period X1 21-22 2 480 2

cold period X2 20-22 1 480 1

Industrial dust,

the multiplicity

of exceeding

the MPC,

times.

X3 - 1 480 1

Vibration,

exceeding the

MPL, dB

X4
lower than

MPL
1 480 1

Industrial

noise,

exceeding the

MPL, dB

X5 < 1 1 480 1

Ultrasound,

exceeding the

MPL, dB

X6 < 1 1 480 1

Heat radiation

intensity,

W/m2

X7 1 480 1

Illumination of

the workplace,

LC:

X8

at the level

of sanitary

norms

1 480 1

min object of

distinction, mm
X9 > 1 1 480 1

category of

work
X10 3-4 1 480 1

Physical

dynamic load,

j:

total х105 X11 4,2 1 480 1

regional х105 X12 2,1 1 480 1

Physical static

load, N · s:

on one hand

х104
X13 < 18 1 480 1

on both hands

х104
X14 < 43 1 480 1

on body X15 < 61 1 480 1

 43

muscles х104

Workplace

(WP), posture

and movement

in space

X16

RM

stationary,

posture

free,

weight of

the

transported

cargo up to

5 kg

1 480 1

Shift
X17

morning

shift
1 480 1

Duration of

continuous

work during the

day, h

X18 4 1 480 1

Duration of

concentrated

observation, %

of the length of

the work shift

X19 51-57 3 96 0,6

Number of

important

monitoring

objects

X20 < 5 1 480 1

Tempo

(number of

movements per

hour):

small (wrist) X21 361-720 2 480 2

large (hands) X22 < 250 1 480 1

The number of

calls in an hour
X23 76-175 2 480 2

Monotony:

the number of

receptions of

the operation

X24 6-10 2 480 2

the duration of

the recurring

transactions, s

X25 31-100 2 480 2

Work and rest

mode
X26

with the

inclusion

of music

and

1 480 1

 44

gymnastics

Nervous-

emotional load

X27

Complex

actions on

a given

plan with

the

possibility

of

correction

3 240 1,5

Integrated scoring severity of labor is determined by the formula 3.3:

 UT = Xmax + (6 - Xmax)/6(N-1) Xfi , (3.3)

where Xmax - the highest of the obtained partial points;

Xfi – score on i-th of the factors taken into account;
n – number of factors taken into account without one factor Xmax ;
N – total number of factors.
In this case, the values will look like:

Xфi = 35,5;

UT = 3,661.

Table 3.3- Integral score

Category of

severity
1 2 3 4 5 6

Integral-point

estimation
Up to 1.8 1,9-3,3 3,4-4,5 4,6-5,3 5,4-5,9

6,0 and

more

The result of the accumulated score is considered to be the group of

seriousness of works 3.

The main problem is considered to be self-optimization of the meaning of the

conditions of the labor site of the operator for the purpose of more effective its

activity. Analyzing the data earlier, in order to optimize the circumstances of the

work, it is necessary to reduce the period of irritable and psychological overload, up

to 240 min., to reduce the period of constant activity during the days.

3.2 The calculation of the integral scoring after optimization

It is necessary to calculate the integral score after optimization.

Integrated scoring severity of labor is determined by the formula 5.3.

In this case, the values will look like:

Table 3.3 - Working environment factors

Working

environment

Indicator Value of

indicator

Score factor

after

The

duration of

assessment

of the

 45

factors optimization the factor

tpmin after

optimization

specific

gravity of

the working

environment

factor Xф

The

temperature of

the air in the

workplace, 0С:

warm period X1 21-22 2 480 2

cold period X2 20-22 1 480 1

Industrial dust,

the multiplicity

of exceeding

the MPC,

times.

X3 - 1 480 1

Vibration,

exceeding the

MPL, dB

X4
lower than

MPL
1 480 1

Industrial

noise,

exceeding the

MPL, dB

X5 < 1 1 480 1

Ultrasound,

exceeding the

MPL, dB

X6 < 1 1 480 1

Heat radiation

intensity,

W/m2

X7 1 480 1

Illumination of

the workplace,

LC:

X8

at the level

of sanitary

norms

1 480 1

min object of

distinction, mm
X9 > 1 1 480 1

category of

work
X10 3-4 1 480 1

Physical

dynamic load,

j:

total х105 X11 4,2 1 480 1

regional х105 X12 2,1 1 480 1

Physical static

load, N · s:

on one hand X13 < 18 1 480 1

 46

х104

on both hands

х104
X14 < 43 1 480 1

on body

muscles х104
X15 < 61 1 480 1

Workplace

(WP), posture

and movement

in space

X16

RM

stationary,

posture

free,

weight of

the

transported

cargo up to

5 kg

1 480 1

Shift
X17

morning

shift
1 480 1

Duration of

continuous

work during the

day, h

X18 4 1 480 1

Duration of

concentrated

observation, %

of the length of

the work shift

X19 51-57 3 96 0,6

Number of

important

monitoring

objects

X20 < 5 1 480 1

Tempo

(number of

movements per

hour):

small (wrist) X21 361-720 2 480 2

large (hands) X22 < 250 1 480 1

The number of

calls in an hour
X23 76-175 2 480 2

Monotony:

the number of

receptions of

the operation

X24 6-10 2 480 2

the duration of

the recurring

transactions, s

X25 31-100 2 480 2

 47

Work and rest

mode

X26

with the

inclusion

of music

and

gymnastics

1 480 1

Nervous-

emotional load

X27

Complex

actions on

a given

plan with

the

possibility

of

correction

3 240 1,5

Xфi = 32,1;

UT = 2,098.

Table 3.4 - Integral score

Category of

severity
1 2 3 4 5 6

Integral-point

estimation
Up to 1.8 1,9-3,3 3,4-4,5 4,6-5,3 5,4-5,9

6,0 and

more

3.3 Conclusion

Prior to the optimization, i.e. in the category of severity of work equal to 3,

some production indicators were reduced-optimization of work and rest. In such

circumstances, the position of the body of a reasonable worker reached up to the

last, thus, what increases the likelihood of diseases and different signs in workers.

In order to optimize the circumstances of the work, it is necessary to reduce the

period of irritable and psychological overload, up to 240 min., to reduce the period

of continuous activity during the days, to reduce the duration of the careful study

up to 20%. After the optimization of the characteristics of the group of the

seriousness of the same 2. The presence of this group shall be observed without

exception of the permissible significance of the conditions of the proletarian

sphere. The presence of this functionality does not break, deviations in the stay of

health, associated with high-class work cannot be traced.

 4. Economical part

4.1 Calculation of the cost of software development

According to the formula 4.1, the number of costs required for SOFTWARE

development is determined, which, in turn, includes expenses, accruals,

depreciation and labor payment:

С = WF + SST + D + EC + CMC + MC + OE + OH , (4.1)

 48

where: WF – wage fund;

SST – deductions for social security tax;

D – depreciation;

EC – electricity costs;

CMC – costs of materials and components;

MC – the cost of maintenance;

OE – other expenses;

OH – overhead.

Two components of the salary are the main salary and additional. The wage

Fund is calculated by adding the basic and additional wages according to the

following formula:

WF= Sb +Sadd, (4.2)

where: Sb – basic salary, thousand tenge;

Sadd – additional salary, thousand tenge.

The basic salary is considered according to the formula:

Sb=ТxТС/(tсрx8), (4.3) where Т – total labor costs (days);

tср – the average number of days in a month is 21 days, multiplied by the

number of hours in a work day – 8;

ТС – tariff rate.

4.2 Calculation of the complexity of software development

To calculate the components of labor costs is determined by the formula 5.4:

Q = q x c , (4.4)

where Q – conditional number of commands;

 q – coefficient that takes into account the conditional number of

commands depending on the type of task;

с – coefficient taking into account the novelty and complexity of the

program.

In this thesis we used multivariate problems, and the coefficient, which

takes into account the conditional number of teams is 5200.

Next you need to determine the C-coefficient, which takes into account

the novelty and complexity of the program.

According to the degree of novelty, the software can be divided into 4

groups:

group A - development of fundamentally new tasks;

group B - development of original programs;

group C - development of programs using standard solutions;

group D - one-time typical task.

The coefficient of calculation of labor intensity is selected from table 5.1, on

the cross-arrangement of groups of complexity and the degree of novelty.

Table 4.1 – The payoff of the complexity

 49

Computer language Difficulty

group

Degree of novelty Coefficient C

A B C D

High level

1 1,38 1,26 1,15 0,69 1,2

2 1,30 1,19 1,08 0,65 1,35

3 1,20 1,10 1,00 0,60 1,5

Low level

1 1,58 1,45 1,32 0,79 1,2

2 1,49 1,37 1,24 0,74 1,35

3 1,38 1,26 1,15 0,69 1,5

For the diploma project was chosen to develop a fundamentally new

program in a high-level programming language with 2 levels of complexity. So

C = 1.35.

Next, it is necessary to calculate the main indicator of the component

parts of labour costs according to the formula 4.1.

Q = 5200 x 1,35 = 7020 (commands).

Then you need to calculate the time to develop the software. The total time

for product development consists of different components.

The composition of the full time to design the application is shown in 4.2.

Table 4.2 – The structure of the total time to create a software product

Stage

Indication of

the time of this

stage

The Maintenance of stage

1 Тpd Preparation of the description of task

2 Тd Problem description

3 Та Algorithm development

4 Тfc Develop a flowchart of the algorithm

5 Тw Writing a program in Javascript

6 Тp Program printing

7 Тot Debugging and testing the program

8
Тn Documentation, user instructions, explanatory

note

In man-hours the time is calculated, while Tpd is taken from the actual

time, the time of the remaining parts is characterized by the calculated method,

according to the conditional number of commands Q.

The time that was spent on one stage of product design can be calculated

by the formula:

 50

Tpd (time for the preparation of the description of the problem),

characterized by the fact and is (from 3 to 5 days 8 hours):

Tpd = 24 person / h.

Тd (time for the description of the problem) is calculated by the

formula:

Тd = Q x C / (50 х K) , (4.5)

where C – the coefficient of accounting for changes in the problem, the

coefficient C depending on the complexity of the problem and the number of

changes is selected in the range from 1.2 to 1.5. In this paper, the coefficient C

= 1.35, selected from table 4.1.

K – coefficient, taking into account the qualification of the

programmer.

Determine the value of the coefficient K from the table 4.3

Table 4.3 – The coefficients of the skill of the programmer

Experience The coefficient of skill

till 2 years 0,8

2-3 years 1

3-5 years 1,1 – 1,2

5-7 years 1,3 – 1,4

more than 7 years 1,5 – 1,6

In the thesis qualification coefficient K = 0,8, as the experience of working

activity of the programmer is not more than 2 years.

The value of Q was calculated by the formula 5.4, Q = 7020. The calculation

of the (time for the description of the problem) is calculated by the formula 4.5:

Тd = 7020 x 1,35 / (50 x 0,8) = 236,9 hours.

Тa (time to design the algorithm) determined by the formula 4.6:

Та = Q / (50 x K), (4.6)

The value Q = 7020, the qualification coefficient K = 0.8 was taken from

table 5. Calculation of Та is calculated by the formula 5.6:

Та = 7020 / (50 x 0,8) = 175,5 hours.

Тfc (the time for the preparation of the flowchart) is also calculated by the

formula Ta 4.6.

Тfc = 7020/ (50 x 0,8) = 175,5 hours.

 51

Тw (time of writing the product in the programming language) is considered

according to the formula 4.7:

Тw = Q x 1,5 / (50 x K). (4.7)

Value of Q =7020, K = 0.8, are taken from the table 4.3.

Тw = 7020 x 1,5 / (50 x 0,8) = 263,25 hours.

Тp (time printing programs) is considered by the formula 4.8:

Тp = Q / 50. (4.8)

Value of Q = 7020.

Тp = 7020 / 50 = 140,4 hours.

Тot (time of compilation and testing of the program) is considered

according to the formula 4.9:

Тot = Q x 4,2/50 x K. (4.9)

The values of Q and K are also calculated in sub-paragraph 4.5.

Тot = 7020 x 4,2 / 50 x 0,8 = 737,1 hours.

Тn (time for documentation), taken in fact and equals (from 3 to 5 days 8

hours):

Тд = 24 person / h.

Total labor costs are defined as the total compound cost of the formula

4.10:

Т = Тpd + Тd + Та + Тfc + Тw + Тp + Тot + Тn.

(4.10)

T = 24 + 236,9 + 175,5 + 175,5+ 263,25 + 140,4 + 737,1+ 24 = 1776,65

hours.

The minimum wage (minimum wage), which from 01.01.2017 in the

Republic of Kazakhstan is equal to 24459 tenge, which increases depending on

the tariff coefficient that corresponds to this type of work, is the tariff rate.

Sb = 1776,65 х 24459/ (21 х 8) = 258661 tg.

 52

Additional salary is equal to 21% of the basic salary, determined by the

formula 4.11:

Sadd= 0,21 х Sb (4.11)

Sadd = 0,21 х 258661 = 54319 tg.

The total salary is calculated according to the formula 5.2:

WF = 258661 tg + 54319 tg = 312980 tg.

The social tax is 11% (ст. 358 п. 1 НК РК) from the employee's income, and

is determined by the formula 5.12:

SST =(WF-ST) х 11%, (4.12)

where ST – pension contributions, which are equal to 10% of WF and

social tax are not taken into account:

ST = WF х 10% (4.13)

ST according to the formula 5.13 is equal to:

ST =312980 tg х 0,1 = 31298 tg.

Social tax according to the formula 5.12 will be:

SST = (312980 tg– 31298 tg) х 0,11 = 30985 tg.

According to the mandatory existing depreciation rates, depreciation is

indicated as a percentage of the cost of equipment and is considered according

to the formula 4.14:

D= , (4.14)

where На – depreciation rate;

Собор – initial cost of equipment;

N – time to use your personal computer;

t – number of working days per month.

The cost of the equipment is 160 000 tg.

Depreciation rate (На) of the equipment is determined by the

formula:

 (4.15)

 53

where Сликв — liquidation value, equal to 5.6% of the cost of equipment;

Тнорм — standard service life (for personal computer — 4 years).

.

Then it is necessary to mark N-time of equipment use. The total time of

operation of the laptop counts only the time of work on the computer and is

determined by the formula 4.16:

Т = Тa + Тfc + Тw + Тp + Тot, (4.16)

All values are already known.

Т = 175,5 + 175,5+ 263,25 + 140,4 + 737,1 = 1492 hours.

The operating time of the laptop is used in the formula 4.15 in days, so the

value that was calculated by the formula 4.16 (hours) is translated into days.

1492hours/8 = 187days.

The calculation of depreciation is calculated by the formula 4.14.

А = .

Electricity costs are calculated according to the formula:

EC = М х kз х Т х CkWh ,(4.17)

where M – power of computer (450 Wt);

 kз – load factor (0.8);

 CkWh – the cost of 1 kWh of

electricity;

Т - operating time, hour.

EC = 0,45 х 0,8 х 1492 х 16,65 =8943,048 tg.

The costs of materials and components used in the design of the software

application (CMC), as well as the costs of maintenance and repair (MC) will be

1.3% and 2.7% of the cost of equipment – formula (4.18-4.19):

CMC = 0,013 х Собор, (4.18)

СCMC = 0,013 х 160 000tg = 2080tg,

MC = 0,027 х Собор, (4.19)

MC = 0,027 х 160 000tg = 4320tg.

The overhead costs associated with the management and maintenance,

maintenance and operation of the equipment and other additional costs to

 54

support the processes and circulation are 61.5% of the Wage Fund, determined

by the formula 4.20:

Сoh = 0,615 х WF, (4.20)

Сoh = 0,615 х 312980 tg= 192483tg

The General results of the software product cost calculation and its

composition are shown in table 4.4 and figure 4.1.

Table 5.4 – The effective cost table of the software application

Item of expenditure

The sum, thousand

tenge

Percentage of total

Wages, WF
312980 53,120

Social tax, SST
30985 5,259

Depreciation rate, D
37400 6,348

Electricity costs, EC
8943,048 1,518

Materials and components, CMC

2080

0,353

Overhead cost, Coh 192483 32,669

Maintenance and repair cost, MC 4320 0,733

Total:
589191 100

 55

Figure 4.1 - Cost structure of software development

Conclusion

The total cost of developing the software product is 589191 tenge. Since it is

intellectual work, the most part is the salary of the developer 312980 tg. The

payback period of the project does not exceed year and half.

 56

Conclusion

In this diploma work, WebRTC protocol in peer-to-peer systems was

analyzed.

In the first part of the project analysis of the current state of the

WebRTC protocol, the prospects for its development in the world of

telecommunications was done.

In the second part of the diploma work, we analyzed WebRTC network

architecture and technologies used in WebRTC such as WebSocket and

algorithms that occur when 2 clients are connected.

In the section of life safety, an analysis of working and microclimate

conditions was carried out. The calculation of natural and artificial lighting of

the working room is presented. The proposed architecture of data exchange in

the video conferencing application allows you to distribute the data channels

on the relevant protocols and divide tasks between them. Since initially, the

application architecture of video conferencing is asynchronous, was carried

out the development and implementation of new algorithms for data

management that is required to connect client applications on WebRTC

Protocol. As a result, we received a screensharing application that is able to

monitor the status of clients connected " rooms» - on the server during online

chat.

In the economic part, the business plan of the project is also compiled

and a description of the economic efficiency of the project is provided to

calculate the payback period and it is equal to 4 months.

Developed peer-to-peer "serverless" architecture and algorithms of

interaction of the modules of the video conferencing system connects the

client and server parts of the system under the Protocol WebRTC and

communication of client web applications.

It is worth noting that at the moment there are some other problems that

limit the use of the WebRTC Protocol on devices:

1) only three browsers (Opera, Mozilla Firefox, Google Chrome)

support this Protocol;

2) requires a powerful processor and enough memory to process audio

and video data streams. In addition, these browsers do not work with graphics

coprocessors, as a result of which the main processor is loaded.

 57

List of abbreviations

1. RTC – Real Time Communication

2. P2P – Peer-to-peer

3. OS – Operating System

4. API –Application Programming Interface

5. JSON – JavaScript Object Notation

6. JS – Javascript

7. HTML –HyperText Markup Language

8. IP – Internet Protocol

9. CPU – Central Processing Unit

10. TCP - Transmission Control Protocol

11. URL – Uniform Resource Locator

12. HTTP – HyperText Transfer Protocol

13. IRC – Internet Relay Chat

14. IM – Instant Message

15. PeerCDN – Peer-top-peer content delivery

16. HD – High Definition

17. TB – Terabyte measure of computer storage capacity

18. CSS - Cascading Style Sheets

19. SDP – Session Description Protocol

20. UDP – User Datagram Protocol

21. ICE – Interactive Connectivity Establishment

22. NAT – Network Adress Translation

23. STUN – Session Traversal Utilities for NAT

24. TURN – Traversal Using Relays around NAT

25. PC – Personal Computer

26. WF – wage fund;

27. SST – deductions for social security tax;

28. D – depreciation;

29. EC – electricity costs;

30. CMC – costs of materials and components;

31. MC – the cost of maintenance;

32. OE – other expenses;

33. OH – overhead

 58

List of references

1 Ronzhin, A.L., Saveliev, A.I., Budkov, V.Yu. Context-Aware Mobile

Applications for Communication in Intelligent Environment / A.L. Ronzhin,

2 A.I. Saveliev, V.Yu. Budkov // Internet of Things, Smart Spaces, and

Next Generation Networking. — Springer Berlin Heidelberg, 2012. — C.

307‒315.

3 Chan, T. et al. Studying with the cloud: the use of online Web-based

resources to augment a traditional study group format / T. Chan, S. Sennik, A.

Zaki, B. Trotter // CJEM. — 2014. — Т. 16. — C.34‒37.

4 Gerpott, T. J., Meinert, P. The impact of mobile Internet usage on

mobile voice calling behavior: A two-level analysis of residential mobile

communications customers in Germany / T. J. Gerpott, P. Meinert //

Telecommunications Policy. — 2016. — Т. 40. — № 1. — C. 62‒76.

5 Айдынбай, Т. Ж., Шуйтенов, Г. Ж. Технологии передачи данных

в системах видеоконференцсвязи / Т. Ж. Айдынбай, Г. Ж. Шуйтенов //

Наука, техника и образование. — 2015. — № 4(10). — С. 77‒83.

6 Месяцев С. Мобильная конференцсвязь будущего / С. Месяцев //

Мобильные системы. — 2007. — № 12. — С. 48‒53.

7 H.R. Oh et al. An effective mesh-pull-based P2P video streaming

system using Fountain codes with variable symbol sizes / H. R. Oh, D.

O.Wu, H. Song // Computer Networks. — 2011. — Т. 55. — C. 2746–2759.

8 Губарев, В. В., Обейдат, А. А. Алгоритм взаимного исключения

одновременного доступа пользователей к общим ресурсам в пиринговых

системах / В. В.Губарев, А. А. Обейдат // Вестник НГТУ. — 2009. —

№ 2. — С. 75‒90.

9 Civanlar, M. R. et al. Peer-to-peer multipoint videoconferencing on

the Internet / M. R. Civanlar, Ö. Özkasap, T. Çelebi // Signal Processing:

Image Communication. — 2005. — Т. 20. — pp.743–754.

10 Ramzan, N. et al. Video streaming over P2P networks: Challenges

and opportunities / N. Ramzan, H. Park, E. Izquierdo // Signal Processing:

Image Communication. — 2012 — Т. 27. — C. 401–411.

11 Е.Хакимжанов. Расчет аспирационных систем. Дипломное

проектирование. Для студентов всех форм обучения всех

специальностей. – Алматы: АИЭС, 2002 - 30 стр

12 Абдимуратов Ж.С., Мананбаева С.Е. Безопасность

жизнедеятельности: Методические указания к выполнению раздела

«Расчет производственного освещения» в выпускных работах для всех

специальностей. Бакалавриат - Алматы: АИЭС, 2009. - 20 с

13 Базылов К.Б., Алибаева С.А., Бабич А.А. : Методические

указания по выполнению экономического раздела выпускной работы

бакалавров для студентов всех форм обучения специальности 050719 –

Радиотехника, электроника и телекоммуникации – Алматы: АИЭС, -

2008. -19 с.

 59

14 Кодекс Республики Казахстан от 10 декабря 2016 года № 99-IV

«О налогах и других обязательных платежах в бюджет (Налоговый

кодекс)» (с изменениями и дополнениями по состоянию на 28.04.2016 г.),

ст.120.

15 https://hpbn.co/webrtc/

 60

Appendix A – List of programming of CSS part of the application

 61

Appendix B – List of programming of server part

 62

Appendix C – List of programming of getUserMedia function

