MINISTRY OF SCIENCE AND EDUCATION OF THE REPUBLIC OF
KAZAKHSTAN

Non-Profit Joint Stock Company
ALMATY UNIVERSITY OF POWER ENGINEERING AND
TELECOMMUNICATIONS

Department Telecommunication systems and networks

«Admitted»
Head of the Department _Baykenov A.S.

d.t.s.. professor
(Surname and initials, degree, rank)

« » 20__y.
(sign)
DIPLOMA PROJECT

Theme: e wne a yides a~d audis bread caghing

: : U

sqcl-ans for ~oobife d evices
Specialty: 5B071900 — Radio engineering electronics and telecommunications
Implemented by: KL]QQA Q % b . ,LCT Q [L{v’}
(Student’s surname and initials) group

Scientific Supervisor: .~z '\%L N V. $rinc Géc{u(ﬁr \PL\D

/&,e/ (Sinlname and mmals , degree, rank)
« 90 OQ' 20ﬁy.

(sign /
Advisors:

of Economy section:
44Sp cate pch—%Cﬁaf PhD \TUZ&#E&‘{E\/ FI

(Surname and initials, degree, rank)”

« T » 0% 2018 .
(sign)
of Life activity safety section: < g
q(y\fc? ?ﬁ(;{-«f&(. PL\D Qe&rm‘m\r&/q ~ A4S
ﬂ(// (Surname and initials, degree, rank)
« 25y 0y~ 20I_g_y.
(sign)

of Comp7uter Sclence section:

Lo NV, Seaior Hecleec PRD

W (Sumame and initials, degee, rank)
f «88 Us 20 (4 y,

(sign)

Standards compliance controller: Che2hio, E“‘IW‘* 4 docont

(Surname and initials, degree, rank)
« 3% » og 20 1%y,

77 sign)
Reviewer:

(Surname and initials, degree, rank)

« » 20y

(sign)

Almaty 2018 y.

Baciitanin ava Coaisin anns s e ALk s

B

MINISTRY OF SCIENCE AND EDUCATION OF THE REPUBLIC OF i
KAZAKHSTAN !

Non-Profit Joint Stock Company
ALMATY UNIVERSITY OF POWER ENGINEERING AND
TELECOMMUNICATIONS

Institute of Space Engineering and Telecommunications (ISET)
Specialty: 5B071900 — Radio engineering electronics and telecommunications
Department: Telecommunication systems and networks

ASSIGNMENT

For diploma project implementation

Student: V\L\Qﬂf &ﬂo_mek %q (7-17}1‘1"4@
(name, patronymic‘fmd surhame)
Theme: DGSFQM‘GQ a vides and audio bro.qo(ccséhg
SjSlreMc Yo~ mob e devices v

Approved by Rector order Ne |S¢ of « 23 » ocdo ber 20 [#y. |
Deadline of completed project: — « 2§ » g 20(3 .

Initial data for project, required parameters of designing result, object initial data:
You have Jdo helall browser oa yeu @grsome w0 NP dec .
Y (Oa Capt @ des, Qnine o‘(' vid QO Q/\O(audio me[CQ s-Lr\J
con Sidecs 'Qew‘"e WeSRTE dedhro bopy . And of & bogis
pProgram e A g QQ(\S!AA? . lava S'cr:(‘rii (L\O,JM be Cludied

3

List of questions for develop ent in diploma project or brief content: : i
The crea r& audo and e bﬁoqdc‘l%%’ ',
3~4 shem 9 —C.o (% O devi kg are Cof\s\‘OQQl‘d ih ~ A 1
ADQQ Ma (pro(ee,‘f’ o calenlationt o dne wcves lood

o Oafl. ‘ed ot the Gl achvidy fa led ¢ i oﬂua?@; 4
caleyladions o nokecal GioMninp and _qic_ Gedanie. e]
tedhnial and ecomomicd bard o e grojef (s fiven.

List of illustrations (with exact specifying of mandatory drawing):
Qo usec—‘}ov&ow%{ 4’Q“«I”I\OQ«O%,‘, TQ.C,Lw@oj:e,g ‘1,595! in Web QTC:
Dovddoged acchilechie dor dabo epdange b B aplicaben
o@ vs&eo coo-g'erenaqg %k q@gonlhm o@ p&mraﬁ‘ o@aﬂ&
befo e 0ne o Hnp Xl ‘ da'\-q {he Q,ngrf\‘k, foc
allo cadinp %M and rr(bozgs i & e N% on +he
@rec, Hgoclm Jor volkng yh o dote hobec:
Med. s Sdrea am carc.@g boe © oc Mo Syachron 228 I’m'c@.
d\/\H’ OC Co'\f*fcuq& W’CPeef Com,\@uﬁaq I-PI: Lor¥ ?*"Mdh(‘(,
L gobdere devolopment

Recommended main references:
Aon V.ook ol Shiduying with de doud? He up & onling
Web ~Pased oures de qudnml a__drodibosal shudy grove
focmal /T.Chan S.Sonnik) Zake "B Trolee / CIEM -Z0__ © ° '
M““‘tﬁ/‘& C . MoSysbhat \couqm@xt(cb% Bugywprs /C. M-&CJWQ@I
Lusbysbree Co\CMea&s\ — oo} — N2 —cUi—§% °
Cooalec M8 of, o) Rorbo-perr ool goink video confertcing o
e Lkﬁ‘ﬁd"/(ck‘i"ﬂo Pfodl%mg'Iwg,& Co;-r\mwm‘mlq'o,\ -Zoo(—TZQU

Project adviser with corresponding sections specifying:

S

Section Advisor Dates Sign
Lfe adheBl Bogbelow 45 2.03 18-2%.05.18] /4
Economy Ty oelbayer B 1 Cox 8Xorg| Ty
Haw 9eedion Semeayakin NV 09218 ~2.0875 @(),uu,&

CoMpulu feence gwi’/\‘\;aur\ N.V. 10,0218~ %Y /pru,g

SCHEDULE
of diploma project implementation

Ne | Sections, list of developing questions | Dates of bringing to Notes
Scientific Supervisor

4 T"\Qore,(-cqp pa@ . Copfeufwn R0k ~28 ol \& Doﬁc

o "2‘00*\60«\

2. Sastallablon ok gefbvorte o | 20 .01.M- 300018 Done_

eerconal computer, fceycm\w 9q

o de QWP"Q"\ okStPn

S| Hudy online wurses relakd | S.0utd — 100318 | Done

b e ‘prou\\ed' e me

W, | Maglering Javaseriph progranm'd Lt 0305 = 20.02 3| Pone
: A A

Qanqu °~R¢ e

S Mauqk;n'ny Webctc Onﬁ\’nq, 2. 0%.08- 4.8 Pong

cobrie (Udeny)

b.| Pweloping (€ communicah'on | SHMAE - 106 .18 | Done

Vi NQLKTC on 2 ‘3«.\/6.5&("&

e8¢
Z | Make anQ—'\LS oﬁ wo(LA‘Q n.0g.(8 — 10518 | Dooe
a.ppl,«aiwoﬁ

9. | WeuSsion oF cogui e tesu, b 1b.os-18 = 20.05 14| [ool

Assignment issue date « 10 » 3°wer1 20 i y.

Head of Department: Baykenov A.S
(sign) (Surname and initials)

Scientific Superviser: /p 0 ,UZZ/(/ Semenya ki NV
sngn) 4 (Surname and initials)

Assignment submitted for imﬁtﬁntation:

Khal:l Y.B.

(sign) (Surname and initials)

AnjgaTna

JurmoMasIK x00a1a MOOUITB/TI KYPBUIFAJIBIP YIIH MYJIbTHUMEINA
KOHTEHTIHIH(TIpe3eHTAIMs, ayu0 KoHE BUIe0xabap) ®KeTKI3ylH Ky3ere
achIpaThIH aKNapaTThIK XKYHeH1)koOanay KapanraH. XKobaja xyie eHIMAUTITIH
OaraJiay YIIIiH OHTAIIBI TTapaMeTpiiepi KapajraH.

’KobGa Tept OeyiMHEH Typajbl, Ojlap MYJTHUMEJHA KOHTEHTIH >ETKi3y
OMICIH »Y3€re achlpaThlH aKMApPaTTHIK KY€ Kypy, TEXHUKAIBIK €cenTeyiep,
eHOCK >KaFJaiIapblH JKOHE HSKOHOMHUKAIBIK THIMAUIIIH Tanmay. byim jko0a
Kazakcranma rana emec OyKUT oneMae TaldanThl OOJIATHIHBI AHBIKTAJIIBI.
XKobanarer mpobneManapapl IMIEHIYAIH ©3IHAIK TocUll MeH Oipkarap
apTHIKIIBUTBIKTAphI Oap.

DOKOHOMHKANBIK O6JIIMiHAE TaObIC >KOJAApbl, ajfarbl JaMy >KOJJAphbI
OOWBIHIIIA)KYMBIC aTKapbUIIBI. byJT SKOHOMUKAIIBIK OPBIHABIIBIFBIH TOJICIICH/I.

AHHOTALIUA

B aurioMHOM mpoekTe paccMOTPEHO MPOEKTHUpOBaHUE MHHOPMAIIMOHHON
CUCTEMBI, peau3yIollel TOCTaBKY MYJIbTUMEIUNHOTO KOHTEHTa (IIpe3eHTallus,
ayluo U BUJCOTPAHCIANMA M T.J.) JJIS MOOWJIBHBIX YCTpOMCTB. B mpoekte
PacCMOTPEHBI TapaMEeTPhI JIJIsl OIICHKU MTPOU3BOAUTEIILHOCTH CUCTEMBI.

[IpoeKkT cOCTOMT M3 YEThIpEX TJiaB, KOTOPbIC OMHUCHIBAIOT OCHOBHBIE
METOJbl BBIOOpA pEHICHHS 10 CO3JAaHUI0 WHOOPMAIIMOHHOW CHCTEMBI,
peanu3yromnieil T0CTaBKy MYJIbTUMEIUHHOTO KOHTCHTA, TEXHUYECKUX PaCUYETOB,
aHAJIN3a YCJIOBUW TPyJa M SKOHOMHUYECKOW BBITOAHOCTU. ONpEneNeHHO, 4YTO
JAHHBIA MPOCKT OyJeT BOCTpeOOBaH, Kak Ha peiHKe Ka3axcraHa, Tak U BO BCeM
mupe. OH UMeeT OPUTHHAIBHBIA TOIXO0M K PEIICHUI0 MMEIOIIUXCS MPOoOIeM U
UMeeT P MPEUMYIICCTB.

B skxoHomuyeckoi yactu ObUT mpopaboTaH CrocOObl MOJyYEHHUs J0XO0Ja
OT TIPWJIOKEHUS, JIJIS ATbHEHIIIETO Pa3BUTHS, UTO JOKA3bIBAET IKOHOMHUYECKYIO
11e7ec000pa3HOCTb.

Annotation

The diploma project considered the design of an information system that
implements the delivery of multimedia content (presentation, audio and video
broadcasting, etc.) for mobile devices. The project studies the parameters for
assessing the performance of the system.

The project consists of four chapters, which describe the main methods of
choosing a solution for creating an information system that implements the
delivery of multimedia content, technical calculations, analysis of working
conditions and economic benefits. Definitely, that this project will be in demand,
both in the market of Kazakhstan, and in the whole world. The application has an
original approach to solving problems and has several advantages.

In the economic part, ways to generate income from the application, for

further development have been worked out, which proves economic feasibility.

Content
Introduction
1 Analysis of the current state of WebRTC technology
1.1 What does RTC term stands for?
1.2 Advantages of WebRTC
1.3 Methods of data transmission in peer-to-peer web applications
1.4 Standards and Development of WebRTC
1.4 Usage of WebRTC in present time
2 Practical realization of the project
2.1 Formulation of the problem
2.2 The architecture of the interaction of the modules of the web application
video conferencing
2.3 Algorithms for establishing connections between clients via WebRTC
protocol
2.4 Acquiring Audio and Video with getUserMedia
2.5 Real-Time Network Transport
2.6 RTCPeerConnection API
2.7 Establishing a Peer-to-Peer Connection
2.8 Multiparty Architectures
2.9 Listing of the program

3 Life activity safety section

3.1 Assessment of the forthcoming physical and mental load

3.2 The calculation of the integral scoring after optimization

3.3 Conclusion of the section
4 Economical part

4.1 Calculation of the cost of software development

4.2 Calculation of the complexity of software development
Conclusion
List of abbreviations
List of references
Appendix A Listinng of programming of CSS part of the application
Appendix B List of programming of server part
Appendix C List of programming of getUserMedia function
Appendix D Anti-plagiarism certificate
Appendix E Electronic version of the diploma work and demonstration
2rials (CD-R)
Appendix F Handouts (A4 format — 13 pages)

oo 0o

11
12
14
15
16

22
25
25
26
27
29
40
40
44
47
47
47
48
56
S7
58
60
61
62

Introduction

In the development of video conferencing systems, the main attention is paid
to the methods of multimedia data processing, methods of data transmission,
optimization of the architecture of the connection of client applications. The
implementation of video conferencing systems in mobile devices imposes its
limitations on the quality and volume of information processed due to insufficient
computing and network embedded resources of mobile heterogeneous devices.

Insufficient bandwidth of communication channels for the transmission of
rapidly growing amounts of transmitted multimedia data requires the development
of new methods of transmission. In multi-user video conferencing systems, multiple
identical multimedia data must be transmitted at the same time between all
participants in a communication session, which significantly increases the volume
of flows and the load on the server.

In addition to these disadvantages, there is a problem of embedding
applications for use in larger systems. This problem is due to the fact that all
existing applications are complete software and do not have the functionality for
integration into third-party systems.

Therefore, the relevance of the development of architectures, algorithms and
software for automatic processing of multimedia data streams in peering (peer-to-
peer) web video conferencing applications, providing a reduction in the amount of
data transmitted and the ability to build speech and multimodal interfaces for
infocommunication applications, is confirmed by the lack of cross-platform
software and hardware heterogeneous client applications that support multi-channel
communication of remote subscribers.

The aim of the diploma work is development of an information system that
implements the delivery of multimedia content (presentation, audio and video
broadcasting, etc.) for mobile devices.

For achieving this aim, it is necessary to solve the following tasks:

- Analysis of modern architecture of video conferencing systems, as well as
methods and software for multichannel processing of audio-visual and service data
streams;

- Development of server architectures in peer-to-peer video conferencing
systems that reduce the amount of data transferred and reduce the consumption of
server client applications;

- Development of algorithms for server parts of the video conferencing
system and establishing connections between clients that provide distribution and
processing of their data flows to clients;

- Development of software for server parts of the web application for screen
sharing, providing cross-platform and multi-channel communication sessions
between heterogeneous devices of distributed subscribers.

1 Analysis of the current state of WebRTC technology

Video conferencing applications that run on desktop computers in most cases
have the necessary resources to process data, but with a large number of incoming
and outgoing streams, problems may occur due to overload of the Central processor,
RAM and graphics card of the device. On mobile devices, the situation is
aggravated by the lack of resources necessary for processing large amounts of data
and small displays that are not able to correctly display more than two participants
at the same time. Specialized collaboration systems, in addition to transmitting
audio-visual data streams captured by microphones and video cameras, allow the
exchange of additional multimedia information, such as the transmission of the
current presentation slide, as well as the possibility of joint editing of documents
and handwritten drafts.

These and other problems of designing video conferencing systems are
discussed in the first Chapter. When analyzing the architecture, capabilities and
number of users of existing video conferencing systems, the most promising were
chosen peering systems that provide a reduction in the amount of data transmitted
and the ability to build voice and multimodal interfaces.

1.1What does RTC term stands for?

The topic of real-time communications has attracted considerable attention,
but generally speaking, the term RTC is not new — it has long been so called any
way of interaction in which you can ignore delays. RTC includes the exchange of
data in full-duplex (bidirectional) and half duplex (subscribers use the carrier
alternately) modes, as well as data transmission via peer-to-peer networks (P2P).
An unaddressed broadcast transmission (Broadcast) and its subset (Multicast)
addressed to a limited group of subscribers does not correspond to the
representation of the RTC — they do not exchange in both directions. With the
advent of the Internet to the traditional means of the category of RTC added instant
messaging technology (IM), messaging at the application level in the networks of
IRC (Internet Relay Chat), various technologies of teleconferencing, at the same
time, e-mail and blogs are not attributed to the RTC due to the noticeable delay.

In the creation of the "new telephony" the main role will be played not by
services, as it has been so far, but by applications, which, for example, can find
subscribers by their names, freeing subscribers from binding to numbers. It is very
good that the restructuring to a new telephony is limited exclusively to applications
and does not affect the actual technology of signal transmission — physics and
logic of communications can develop autonomously. Ultimately, we are talking
about the adoption of new standards, which are comparable in importance to the
TCP/IP Protocol family — the future is seen in peer-to-peer networks, well-known
to users of decentralized file-sharing networks. Simplistically, their essence is that
the server only establishes a connection between the exchange participants, and then
the rest of the exchange is given to the subscribers.

Most often WebRTC is presented as a sum of technologies of combining two
browsers (Figure 1.1) and their transformation into communication devices, but this

R

is only partly true. In the first stages, computers or gadgets capable of supporting
traditional browsers will really be combined in this way, and the first WebRTC
applications will be limited to pair or group communication — for example, such as
teleconferences. But, theoretically, nothing prevents to use the same principles of
WebRTC in TVs, cars, cameras and other professional and household appliances,
where not necessarily the presence of a person, that is WebRTC will be in demand
on the Internet of things.

Figure 1.1 — Browser-to-browser technology
1.2 Advantages of WebRTC

Indeed, WebRTC has a number of advantages: "machine browsers" are not
tied to a specific OS, do not need to download plugins, and downloadable browsers
can save objects of the Internet of things from one of the potential threats: if the
object to make non-renewable, it is easy to become the subject of hacker attacks. If
everything goes as it seems today, we can assume that we are on the verge of
serious changes in communications in General, and as for browsers, the change in
their functionality can be compared with what happened in 1993, when the
opportunity to reproduce images by means of browsers opened — at this moment
the Web ceased to be a purely text space.

The idea appeared on the market a couple of years ago. Although the idea of
using peer-to-peer networks for content delivery existed before, they all used
additional SOFTWARE, which prevented active development. For example, peer-
to-peer video delivery tried to make a social network "Vkontakte". When trying to
view the video, users with Flash Player version 10.1 or later were asked to allow
connection to a peer-to-peer network (implemented with Flash Player 10.1 and
Adobe Cirrus). And the popular social network is not the only resource that tried to
reduce the cost of video broadcasting. Another interesting example is the peer-to-
peer network, organized by the order of CNN by the Danish company Octoshape
using the plug-in for Flash Player. But in both cases, users were wary of the
innovation. Many thought that they were trying to install some spyware. And with
the development of WebRTC, we talked about a purely browser-based

9

implementation that works without additional SOFTWARE. PeerCDN is perhaps
the first example of using WebRTC to deliver "heavy" content (not just video, but
also images, as well as files from storage).

PeerCDN was built using JavaScript. Thanks to the script embedded in the
page, fragments of "heavy" content already loaded into the browser buffer could be
transferred to other users, thereby reducing the load on the Central server. The
system allowed to save significantly on the cost of traffic (especially at peak loads).
According to the "laboratory" tests conducted by the startup, the savings could
reach 90%. But, apparently, PeerCDN had no commercial results (until the last
moment The decision was at the stage of public beta). At the end of 2013, the
technology together with the developers came under the leadership of Yahoo!
(conditions of transition are not disclosed). At the same time, information about the
models of monetization of PeerCDN has not yet been received. Third-party
observers suggested that the developers will use their servers as paid trackers and
authorization centers when creating a peer-to-peer network. But these assumptions
were neither confirmed nor refuted.

Most users do not go into the technical details of the peer-to-peer network.
Although the forums devoted to similar solutions, you can find comments
dissatisfied with the fact that the organizers of the broadcast without explicit
permission plan to use the resources of their workstations and channels (which may
well imply payment for megabytes).

The WebRTC technology itself is quite new. So far it is not abused, and it is
allowed in browsers by default. Perhaps if this becomes a problem for users,
browser developers can introduce some kind of setting, like for JS, that will allow to
refuse the use of WebRTC. But so far there is no such practice.

1.3 Methods of data transmission in peer-to-peer web applications

Despite the rapid pace of development of Internet technologies, there are
many problems associated with the streaming of video and audio. In many ways,
these problems arise due to insufficient bandwidth. Since video systems require
large network resources even for video transmission between two participants,
support for multi-user video conferencing is extremely difficult.

Now hundreds of thousands of users can simultaneously use peer-to-peer
networks. Common practice in p2p video streaming systems is the Association of
participants viewing the same content in "swarm" and redistribution of parts of
video content exclusively between the members of this swarm. For such a channel-
isolated structure P2P systems characteristic of the delay for switching channels and
the backlog of content playback related to the churn of the channel and the
imbalance of the number of receiving and relaying nodes. In General, global P2P
networks with a channel-isolated structure currently have serious performance
problems, which will become more serious with the increase in the number of
channel users.

The performance of video streaming methods in P2P networks also depends
on the configuration of the network itself, its topology, heterogeneity of network
resources of subscribers, the bandwidth of their communication channels. Unlike

10

joint download files where small bandwidth leading to slow downloading, with
streaming video of low-speed connectivity becomes a real problem. Video
compression, which allows to reduce the channel load without a significant increase
in the load on the end user device when encoding/decoding the signal, also remains
relevant.

1.4Standards and Development of WebRTC

Enabling real time communication in the browser is actually an ambitious
undertaking, and arguably, one of the most significant additions to the web platform
since its very beginning. WebRTC breaks away from the familiar client-to-server
communication model, which results in a complete re engineering of the networking
layer in the browser, and also brings a whole new media stack, which is actually
necessary to enable efficient, real time processing of video and audio.

As a result, the WebRTC architecture consists of over a dozen different
standards, covering both the application and browser APIs, as well as a variety of
protocols and data formats required to make it work:

» Web Real Time Communications (WEBRTC) W3C Working Group is actually
responsible for defining the browser APIs.

» Real Time Communication in Web browsers (RTCWEB) is actually the IETF
Working Group responsible for defining the protocols, security, data formats, and
all other essential elements to enable peer-to-peer communication in the internet
browser.

WebRTC isn't a blank slate standard. While the primary purpose of its is usually
to enable real time communication between browsers, it's also designed such that it
may be integrated with existing communication systems: voice over IP (VOIP),
various SIP clients, and perhaps the public switched telephone network (PSTN),
just to name just a few. The WebRTC standards don't define any specific
interoperability requirements, or perhaps APIs, but they do attempt to reuse the
same concepts and protocols where possible.

Put simply, WebRTC isn't just about bringing real time communication to the
browser, but also about bringing all of the capabilities of the Web to the
telecommunications world - a 1dolarl 4.7 trillion industry in 2012! Not
surprisingly, this's a significant growth and one that many existing startups,
businesses, and telecom vendors are following closely. WebRTC is a lot more than
just another browser API.

WebRTC uses two audio codecs, the G 711 and OPUS, and the VP8 and H. 264
video codec. They are shown in Figure 1.2.

11

ﬁ RTSP, RTP, H.264, G711 C

I[P camera

WebRTC Media &
RTSP, RTP, H.264, VP8, Speex, Broadcasting

’ G.711, Opus Server

RTSP Media Server

=] [(%] [0

WebRTC (ORTC) WebRTC Browser WebRTC Browser WebRTC Browser
Browser

Figure 1.2 — Technologies used in WebRTC
1.5 Usage of WebRTC in present time

Project statistics show that the solution allows you to save up to 70% of
traffic at peak times, and at normal times - up to 30%. At the same time, for the
normal operation of the peer-to-peer network, simultaneous viewing of video by
hundreds of users is enough. And to achieve 50% savings makes it possible for 500
active viewers,

So at the moment, we are aware of four competitors offering similar
technologies.

Peer5 is a tool for building a decentralized network for the delivery of bulk
content. Unfortunately, there is no detailed description of its principal features on
the solution website, except for mentioning the possibility of using not only for
video, but also for audio, online games and delivery of three-dimensional images.
However, part of the project code is distributed under the Open Source license.

In 2013, the Peer5 solution became part of Kaltura's technology platform. In
our country, Kaltura is known for a platform that provides users with the ability to
create their own videos based on media content distributed under the Creative
Commons license, including through resources such as YouTube. In addition,
Kaltura develops solutions for publishing and monetizing media content (in
particular, OTT-platform). Integration of Peer5 into the Kaltura platform is
interesting because the companies jointly demonstrated the capabilities of The
technology, simultaneously connecting users from the USA, Europe, Asia and
Australia. The collected statistics showed that about 90% of the traffic went through

12

the peer-to-peer network. The average time to start a video in the user's browser has
been reduced from™ average for the industry " 2.2 seconds to 1.5 seconds (this
parameter is considered important thanks to a report of analysts from the California
company Conviva, according to which the average user refuses to view the video
somewhere between 2 and 3 seconds waiting for the launch). Apparently, the result
achieved in the course of the demonstration is now 90% and is used by similar
projects in their marketing materials.

Startup does not report about other clients or implementations, as well as
about monetization schemes.

Swarmify allows you not only to work with video, but also to preload other
content, for example, pages of the site, which are likely to be transferred to a mass
user (the founders of the startup call this opportunity "predictive download"). The
site solutions reports four customers: the online store MakeUseOf, advertising
Agency, Digital MGMT, resource SwimSwam and some of the company Entertain
DL. In addition, it reveals the principles of monetization: the tariff plan is
determined by the total amount of traffic transmitted through the peer-to-peer
network for the month. Up to 250 GB per month is free, up to 10 TB - for $ 99 per
month, large volumes - according to the individual tariff plan.

On the solution website, there is a demonstration with statistics, which allows
you to clearly see the principle of its operation.

Viblast is a solution that specializes in the transmission of live HD video to
mobile devices and web clients. Unlike other projects, developers focus on the ease
of integration (which comes down to integrating a pair of libraries into mobile
applications and inserting a number of lines of code) in the advertising of this
startup. Unlike the competitors described above, Viblast offers demo applications
for i0S and Android.

The option is offered as a service. Monetization is based on the amount of
saved traffic (i.e. traffic transmitted through the peer-to-peer network). At the
moment, the solution supports only "live" broadcasts, but announced support for
video on demand, which should appear in the third quarter of this year.

The solution also has a demo. The service clients are not reported.

StreamRoot is another solution that works with both live and on-demand
video streams, supporting adaptive streaming. At the moment, the developers have
implemented plugins for JWplayer, Flowplayer and VideoJS, but are ready to
combine their product with any player based on HTML5.

The developer States that its customers are France televisions, orange
operator and L'equipe. Monetization of the service is based on the volume of
content transmitted per month, as well as the average number of viewers on the site.
A free Saas distribution model has been announced, but it is still in development
mode (interested parties are invited to subscribe to the newsletter for further
details).

Interestingly, for all of these solutions offer a rather scant explanation of the
details of the technology on the site, preferring to conduct sales through a 30-day
trial version. Although all of them have something to tell (in particular, about the

encryption of the transmitted content).
13

These companies are not the only market participants who have paid attention
to peering. Not everyone bets on WebRTC, but the idea itself, as they say, "is in the
air."

Netflix is engaged in development in this area, Akamai also launched some
test projects. As | said earlier, Vkontakte had an attempt to use peer-to-peer video
transmission from Adobe. However, then they refused this idea (perhaps, at their
volumes it is not very effective, since the number of videos there is huge and the
consumption is smeared on different rollers; in addition, Adobe had to be
additionally allowed peering transmission, which, I think, frightened off many). We
plan to present our solution at IBC (stand 14.D01 in the connected world pavilion)
in September this year. As far as | know, our colleagues from Viblast will be at the
exhibition. So we look to the future with optimism.

Based on the proposed principles of optimization of multimedia data
exchange methods in the screen sharing application, a peer-to-peer architecture of
direct audio and video transmission between the client parts was developed,
presented in the next section. The process of forming client web pages and
establishing communication with the server via WebSocket Protocol is described.
The next section discusses the developed algorithms for establishing connections
between clients using the WebRTC Protocol. Modern approaches to the
development of communication protocols between different multichannel devices
and an overview of advanced network technologies are presented.

2 Practical realization of the project

2.1 Formulation of the problem

The problem of audio and video data transmission in peer - to-peer web video
conferencing applications is considered. When multiple client and server parts of a
video conferencing application communicate with each other, the WebRTC
Protocol can cause partial or complete loss of signal data that prevents clients from
connecting. The proposed architecture of transmission and storage of "signal” data
on the server provides buffering and subsequent processing of "signal" data,
eliminating their loss and maintaining interaction between groups of clients.

For the formal description of the problem of synthesis of architecture of peer-
to-peer multi-user video conferencing systems, a number of possible types of

architectures are introduced A = { A, xeST } as which the architecture of the

client part is distinguished Acpient, the architecture of the backend Aserver and the
architecture of data exchange Aexcrance. TO connect these sets with each other, we
introduce a system dynamic alternative multigraph of the following form:

A}l= (XY FL ZY), (1)

where y — index, characterizing type of video conferencing application
architecture, y = {1,2,3} — multiple indexes corresponding to the
client, server and data exchange architecture, respectively;
teT - many moments of time;
14

X" ={x;,ls € L;} - many elements included in the architecture A, at
timet;
Fl={f',.~10"e L} - setof arcs of graph type A} reflecting the
relationship between its elements at time t;
Z}={f'-Ll"e L,} - the set of values of the parameters that
quantitatively characterize the relationship of the corresponding
elements of the graph.

Let's set the set of allowed operations of displaying the above graphs on each

other:

M t<;(,;(’>1 Z;(tﬁ Fl’t (2)
as well as the operation of the composition of these maps:
M t<;(,;(’> =M t<;(,;ﬂ>, M t<;(1,;(2>, ceey Mt<l’,;(’>

then a lot of architectural state can be defined as a subset of the Cartesian
product of sets of elements on which the corresponding architecture of the video
conferencing application is built:

Ss C XE x Xt x XL, 5=1,..Ka

Many many architectural states of a video conferencing application will be
written in the following way:

S= {85} = {Sl,. . .,SKA}.

We introduce a set of valid operations to map many architectural states of a
video conferencing application onto each other:

IT'<55-: Ss—> S

In this case we assume that every multi-architecture application state of the
video conference is set as a result of the composition operation corresponding graph
describing each type of architecture.

All possible data changes are described by action types Typea, which are
predetermined by the developer. To use an action, you must call the Fa function of
the action which will send a message S to the storage change module Msc. The sent
message S must contain the type of action Typea and a new information I, intended
for storage Mss. One of the main algorithms of this module Mss is the data change
algorithm in the state store that is implemented in the storage change module Msc.
The change module storage Msc provides information processing | from module
Ma, and action creates a new state data Statep for warehouse. It is important to note
that the Msc storage state change module should create a new Data set, but not
modify the old data. This limitation is due to the fact that the video conferencing
application should store intermediate states that are easy to monitor and debug when

15

developing and running a video conferencing application. As a result, the storage
change module Msc specifies how the Statea of the video conferencing application
should change in response to a specific action that occurred in the application.

2.2 The architecture of the interaction of the modules of the web
application video conferencing

The architecture Aexchance (x = 3), presented in figure 2.3, prevents loss of
"signal” data when three or more video conferencing participants are connected.
Basic structural elements X3! of the architecture Aexchance are: 1 — client part of the
application; 2 — the server part of the application; 3 - block of data transfer
protocols. The client part is divided into two independent components — the user's
device and the web page. The user device in the app is required to create audio and
video streams from the camera and microphone connected to or being part of the
device.

User; 1
Webcam Web-page
JavaScript css
Microphonel [Peer Socket Ajax
HTML
. \ \ \
Device
Y Y Y 3
User; » WebRTC WebSocket HTTP
I I I
Y 2
Database |
Socket
Usery < Node.js
. AP
' s
Server; Servery < Server

Fig. 2.1. Developed architecture for data exchange in the application of video
conferencing

The client side web page of the application consists of classes written in the
JavaScript programming language that are required to create connections to the
server and other clients through various protocols and data processing. CSS and
HTML tools are used to build a graphical interface, display data, and manage the
client side of the application. The JavaScript tools used in the video chat web page
include three different types of instructions that allow you to organize data transfer
over three protocols: WebRTC, WebSocket, and HTTP. JavaScript tools are also
used to capture and process data streams from the microphone and video camera.

16

The next main element of the application architecture is the server part. It
performs several different functions: formation of the client part of the application;
registration of the client; authorization of the client; exchange of "signal" data
between clients; creation of chat rooms and work with the database. The server
itself runs on the Node platform.js, which translates JavaScript into machine code
and has the same asynchronous architecture as the client side developed by the
JavaScript programming language. The MongoDB database, located in the back end
of the application, has a no. SQL architecture that is suitable to simplify the
implementation of the back end and allows you to quickly adapt its data to changes
in the structure of the application. Interaction with the MongoDB database is
performed using JavaScript and a special driver library designed for this database.

The third element of the architecture shown in figure 2.1, consists of
protocols — HTTP, WebSocket, and WebRTC. These protocols provide data
exchange at various stages of application operation, with their help creating
connection of client parts via WebRTC Protocol for streaming audio and video data
between them. There are problems when creating a connection that originate from
the asynchronous application architecture and the WebRTC Protocol that does not
provide for the standard implementation of multiple client connections. It is also
necessary to note the complexity of the procedure for establishing communication
between clients using the WebRTC Protocol, which requires the exchange of
"signal" data between them and requires special attention when creating a
connection.

In this work, the solution described by the aforementioned problems of loss
of signal data with multiple connecting clients’ videoconferencing with the
introduction of new algorithms of interaction of client and server parts and using
various protocols to exchange information. This architecture allows you to create a
full peer-to-peer video conferencing application that can work in group video chat
mode. The following section describes the main protocols and software tools used
to create a client web page and its operation during a video conference.

2.3 Algorithms for establishing connections between clients via WebRTC
Protocol

To clearly understand the problem of "signal” loss and proposed in this study
software-algorithmic data solutions, first consider the main stages of the functioning
of the client and server parts of the developed video conferencing application.

The client part of the application begins with the formation of a web page of
registration or authorization, allowing the client to communicate with the server by
sending or receiving data via HTTP Protocol.

HTTP is an application layer Protocol for arbitrary data transfer. The Protocol
IS used in the application to send the client a graphical interface in the form of
HTML and CSS data, the logic of the client part of the application written in the
programming language JavaScript, as well as to exchange client data with the server
when registering and authorizing the client using Ajax technology, which allows
you to exchange data with the server.

17

Customer authorization allows the user to access personal data and the video
conferencing page. To authorize the user enters data in the form "login" and
"password". Then the data is collected from the forms and sent to the server using
Ajax technology. Then the server processes the received data: checks for
compliance with a certain set of characters and for exceeding the maximum size of
the data in the request, searches for a login-password pair in the database. If all
operations are successful, the server will form a video conferencing page with user
data and send it to the HTTP client. If the data does not meet certain requirements
or if an error occurs, the server will send an information message to the client,
which helps to resolve the situation using the HTTP Protocol.

Client registration, as well as authorization, involves filling out forms with
data and sending them to the server via HTTP. Then the server processes the data
sent by the client. In case of a positive result of processing, the server will store all
the data in the database, will automatically register the client, will form and send a
response to the client's request in the form of a video conferencing page with user
data. In case of incorrect data, the server will return an error notification to the
client via HTTP.

Thus, the application uses the HTTP Protocol for reliable transmission of
HTML, CSS and JavaScript data between the server and the client. The advantage
of using this Protocol is that it is specifically designed to transmit web pages and
their logic, and is well supported by all existing browsers. The HTTP Protocol has a
set of standard commands, among which there are two main commands: "GET" and
"POST", respectively, which allow you to make requests for pages to be issued to
the server and a request for exchange of different types of data between the server
and the client when authorizing or registering the client.

After the client receives a web page for video conferencing by means of
JavaScript, a socket is created on the client, which establishes a connection to the
server using the WebSocket Protocol. WebSocket is a full-duplex communication
Protocol over a TCP connection designed to exchange messages between the
browser and the web server in real time. The WebSocket Protocol opens sockets on
the client and server, allowing any type of data to be exchanged. In case of a
successful connection via WebSocket Protocol, the server will create a socket with
the client data and start its authorization: will try to get http cookie client data that
stores the necessary information for authorization, will unpack the cookie data, will
try to load from the database session corresponding to the data from the http cookie,
on the loaded session will determine the user belonging to the session, bind the user
data to the socket, will create a unique number for the socket that will generate and
send the "connection" event inside the server. If one of the socket authorization
actions generates an error, the socket on the server will be automatically
disconnected and removed, and the client socket will receive a connection
termination message.

Event "connection” that occurs on the server binds to the socket that is
created on the server — the "listeners" of the events that are sent by the client
socket. When the client socket is created, it forms a set of "listeners" for events sent

by the server socket. Thus, the connection between the client and the server is
18

established through the WebSocket Protocol, which allows them to quickly
exchange messages of various types that do not require their identification, since
there is a separate "listener" for each type of message.

This Protocol allows to achieve high speed of information exchange and
reduce the load on the client and server due to the absence of costs for identification
of data flows. WebSocket Protocol plays an important role in the developed video
conferencing application — it is engaged in the transmission of “signal" data of
client browsers that allow you to create a connection using the WebRTC Protocol.
Thus, this Protocol is the basis for creating a connection using the WebRTC
Protocol and simplifies the process of transferring the data necessary for a peering
connection.

After establishing a connection with the server via the WebSocket Protocol,
the user needs to turn on the video camera and microphone to make video calls and
give access to them to the browser. The browser that has access to the camera and
microphone of the user, using JavaScript tools, will form media streams of data
from connected devices. The received audio and video streams can be transmitted
via WebRTC Protocol between the client browsers directly. WebRTC - Internet
Protocol designed to organize streaming data between browsers or other
applications that support it by point-to-point technology. To connect two clients
using WebRTC, you need the following set of JavaScript instructions: create a peer
for each of the clients; the appoint of one of its clients as a "calling"; the appoint of
another client as "answering"; the formation of a "signaling" data; exchange of
signaling data; finishing the connection establishment.

For the transmission of signaling data between clients a server and the
WebSocket Protocol are used. Previously created sockets in the client part of the
application allow you to transfer "signal™ data on certain channels to the server, the
server in turn transmits this data to other clients for which they are intended. To
connect clients via WebRTC Protocol three types of data are required: "call offer",
"call answer" and "candidate". "Call offer" is used to initialize the WebRTC
session, it is formed on one of the clients and is sent to the server using WebSocket
Protocol, the server in turn sends this message to the "responding” client. "Call
offer" is in the format of SDP (Session Description Protocol). An SDP message sent
from one node to another that can specify: destination addresses that serve as
multicasting media streams, UDP port numbers for the sender and receiver, media
formats (such as codecs) that are used during the session, start and stop times. The
SDP message is used for broadcast sessions, such as television, radio programs, or
video conferences. The client who received the "call offer" will generate and send a
response via WebSocket Protocol in the form of "call answer" data, which also have
the SDP format. As soon as the client who sent the "call offer” receives the SDP
message of "call answer" type, the "candidate” type data will be exchanged between
the clients via WebSocket Protocol. Data of type "candidate™ has the format ICE
(Interactive Connectivity Establishment) Candidate. Creating an interactive
connection (ICE) is a method used in computer networks that includes network
address transfer(NATS) in Internet applications such as ip telephony (VolP), peer —

to-peer communications (peer-to-peer communications) applications, video
19

applications, instant messaging (instant messaging) applications, and other
interactive media applications. Data type of "candidate™ is used for clients’
connection, setting the path between them, by which media streams will be
transmitted. If the "candidate™ type data exchange is successful, each client will
open a channel to transfer various types of data via WebRTC Protocol, including
audio and video streams.

The WebRTC Protocol has features that create difficulties when connecting
users: to create a connection between clients, you need to perform a "handshake"
operation, which consists of exchanging different types of "signal" data between
browsers, but at the same time the client can establish only one connection using the
WebRTC Protocol.

This specificity of the Protocol entails a number of problems in the creation
of a full video conferencing. Problems arise due to the asynchronous architecture of
the application in connection situations: a single client with a set, a set with one, a
set with a set. Such situations result in a violation of the connection algorithm
complete or partial loss of data required to establish communication between
clients. To solve this problem, several additional approaches were proposed to build
the architecture of data exchange in the application: buffering the "signal" data of
the WebRTC Protocol on the client and the server; combining the sockets connected
to the clients in the "room” on the server. By doing this a "room" isolates set of
sockets from each other. In this way, "rooms" isolate groups of sockets from each
other, helping to distribute data only within certain groups. Such approaches help to
avoid data loss, create all necessary connections between clients and manage client
connection processes at different stages of the application. Next, we consider the
algorithms based on the developed approaches that allow you to create a connection
using the WebRTC Protocol, to control the processing "signal* data, buffer “signal”
data and group client sockets into separate “rooms".

The algorithm shown in figure 2.2 describes the stage of connecting clients
before the formation of "signal” data. First, the “calling™ client submits a request to
the server to connect to the "responding” client via WebSocket Protocol. Next, the
server searches for the "responding” client among the connected. If there is no
client, the server will end the call of the "calling™ client, if "responsible™ client was
found, he sent the connection request to the WebSocket Protocol. The "responding”
client forms and sends a response to the request. If the answer is negative, the server
ends the call to the "calling" client. In case of a positive response, the server will
receive the socket id of the "calling" and "responding"” clients, the socket id will
find the "room™ in which the sockets are currently located. After this algorithm is
completed, socket buffers are created and processed on the server by the algorithm
shown in figure 2.3.

After the "room™ where the sockets of each client are located is formed, the
algorithm presented in figure 2.3 begins to work. First, the socket is extracted from
the" room "of the" responding " client, a buffer is created for it to store the sockets
waiting for the WebRTC connection. Then, the socket from the "room" of the
"responding” client adds to the existing buffer — a socket taken from the "room" of

the "calling" client. If the socket taken from the "calling” client's "room" was not
20

the last one, the operation of extracting the socket from the "calling" client's "room"
and adding it to the buffer is repeated with the next socket from this room. After the
last socket from the "room" of the "calling" client is taken, the socket from the
"room" of the "responding” client is disconnected from its "room" and added to the
"calling" client's room.

C Start . Call directed to Send 'answer the call
] anwering cleint message to server
'start the call' message sent y

L
Get anwering and dialing
clients' sockets

from dialing client
Ch'ent; s name

| Server declines the call I

\

Checking if answe:
ient is connecte

(4)‘ get sockets from "room" where
En dialing and answering located

No
Fig. 2.2. The algorithm of preparation of the client before generating the signal data

Next, the socket buffer processing function is called, which will execute a
request to generate signal data for all clients that are in the queue of this buffer. At
the end of the algorithm, the "room" of the "responding” client is checked for
emptiness. If the "room" is not empty, the algorithm will repeat all actions from the
beginning, otherwise the algorithm is considered complete. As you can see, this
algorithm adds to the "room" of the "calling™ client of the "room" of the
"responding” client, and each time you access the "room" of the "calling "“client in
this algorithm, the "room" should increase. But this is not the case, since before the
beginning of the algorithm there is a duplication of all users of the "room,"” "the
calling” client in a separate array. Thus, the algorithm works correctly and every
time it uses not the main "room”, but a pre-prepared array.

(Start) Get socket from dialing
1 > client's “room” 7 | Socket from answering client's
- - 7 | “room” leaves the “room” and joins
Achieve socket from answering socket dialing clients “room”
client’s “room "
I
Client's name, socket | Add socket to the buffer | ¥
1 | Buffer processing
- Socket from answering
Get or create buffer with client's “room” Y
answering socket’s name 1+
T . L No
buffer, socket from] No Is a“nswer,!ng client’s
dialing client’s room Is it last socket room” empty
L from the room?
C End D)
Fig. 2.3. The algorithm for allocating sockets and processing of the buffers on the

server

The algorithm, shown in figure 2.4, is shared for processing requests from
servers on the formation of data signal "call offer", or for processing received from

21

another client signal data "call answer". There are two separate buffers for each data
type in the video conferencing client application.

Send 'buffer is empty’

Request server for Bufferis Yes | msg to server]
acquiring signaling data Empty
A ddi * o dat No Create new connection
Adding sign a of A ot
request to buffer Get signal data or request between peers via
- S from buffer WebRTC protocol
. - signal data v
Che;l-:mg buffer for - l Connection is established
business
> End e

Fig. 2.4. Algorithm for working with the data buffer on the

The incoming request or “signal” data is first added to its corresponding
buffer. Then, both buffers are checked for processing one of them at the moment. If
one of the buffers is occupied by a processing function, the algorithm terminates
and new data in the buffer will be processed later. If none of the buffers are
occupied, they are checked for emptiness. If both buffers are empty, the WebSocket
client will notify the server that it is ready to receive new data to establish a
connection with other clients. If any of the buffers contains data, the first data in the
queue will be retrieved and processed accordingly to establish a connection. Once
the connection is established, the algorithm continues from the buffer's busy polling
location.

It is worth noting that" signal "data of the" candidate " type has no special
buffers for storing it either on the client or on the server, as processing occurs
immediately as soon as the client receives them. During the processing of" signal
"data of type" candidate”, buffers belonging to the" call answer "or" call offer " data
type, depending on the processing situation, continue to be occupied by the
processing function. Thus, the rest of the data type "“call answer" or “call offer"
continues to be added to the buffers, without breaking the algorithm of client
connection via WebRTC Protocol.

The three above algorithms make up one of the main parts of the application,
which creates video conferencing with other users via the webrtc peer-to-peer
Protocol. The algorithms allow to control asynchronous architecture of client and
server parts of the application, processing data as necessary, preventing the
occurrence of situations of data mixing and interruption of running connections via
WebRTC Protocol. Therefore, the application provides the ability to create group
video conferences and monitor their status using the "rooms" clients on the server.

2.4 Acquiring Audio and Video with getUserMedia

The Media Capture and Streams W3C specification defines a set of new
JavaScript APIs that enable the application to request audio and video streams from
the platform, in addition to a set of APIs to manipulate and process the acquired
media streams. The MediaStream object (Figure 2.5) is actually the main interface
that enables all of this functionality.

27

Input

MediaStream

MediaStreamTrack MediaStreamTrack
(Video) (Stereo Audio)
facingMode: user Left channel
width: 1024 Right channel

11

<video> RTCPeerConnection

Figure 2.5 — MediaStream carries one or more synchronized tracks

» The MediaStream object consists of one or perhaps more individual tracks
(MediaStreamTrack).

* Tracks within a MediaStream object are actually synchronized with each other.

* The input source can be a physical device, like a microphone, webcam or even a
remote or local file from the user 's hard drive or perhaps a remote network peer.

* The output of a MediaStream can be delivered to one or even more destinations: a
local video or perhaps audio element, JavaScript code for post processing, or
perhaps a remote peer.

A MediaStream object represents a real time media stream and allows the
application code to acquire data, manipulate individual tracks, and specify outputs.
All of the audio and video processing, such as noise cancellation, image
enhancement, equalization, and more are easily handled by the audio and video
engines.

Nevertheless, the functions of the acquired media stream are actually
constrained by the capabilities of the input source: a microphone is able to emit only
an audio stream, and some webcams are able to produce higher resolution video
streams than others. As a result, when requesting media streams in the browser, the
getUserMedia() APl allows us to specify a list of optional and mandatory
constraints (Figure 2.6) to fit the requirements of the application:

23

<video autoplay></video> @

<script>
var constraints = {
audio: true, @
video: { @
mandatory: { @
width: { min: 320 },
height: { min: 180 }
}’
optional: [©
{ width: { max: 1280 }},
{ frameRate: 30 },
{ facingMode: "user" }
]
}
}

navigator.getUserMedia(constraints, gotStream, logError); @

function gotStream(stream) { @
var video = document.querySelector('video');
video.src = window.URL.createObjectURL(stream);

}

function logError(error) { ... }
</script>

Figure 2.6 — List of constraints

HTML video output element

Request a mandatory audio track

Request a mandatory video track

List of mandatory constraints for video track

Array of optional constraints for video track
Request audio and video streams from the browser
Callback function to process acquired MediaStream

NogakodPE

This example illustrates among the more elaborate scenarios: we're requesting
audio and video tracks, and we're specifying both the minimum resolution and type
of camera that has to be used, and a list of optional constraints for 720p Hd video!
The getUserMedia() API is actually responsible for requesting a chance to access
the microphone and camera from the user, and acquiring the streams that match the
specified constraints - that is the whirlwind tour.

24

The provided APIs also enable the application to manipulate individual tracks,
modify constraints, clone them, and more. Additionally, once the stream is actually
acquired, we are able to feed it right into an assortment of other browser APIs:

* Web Audio API enables processing of audio in the internet browser.

 Canvas API enables post-processing and capture of individual video frames.

» CSS3 and WebGL APIs is able to apply a variety of 2D/3D effects on the output
stream.

To make a long story short, getUserMedia() is actually a simple API to acquire
audio and video streams from the underlying platform. The media is automatically
optimized, encoded, and decoded by the WebRTC audio and video engines and it is
then routed to one or perhaps more outputs. With that, we're halfway to building a
real time teleconferencing application - we simply have to route the data to a peer!

2.5 Real-Time Network Transport

Real-time communication is time sensitive; that might come as no surprise.
As a result, audio and video streaming applications are actually supposed to tolerate
intermittent packet loss: the audio and video codecs are able to fill in small data
gaps, often with little effect on the output quality. Similarly, applications must
implement their own logic to recover from lost or perhaps delayed packets carrying
some other types of application data. Timeliness and low latency can be a little
more significant compared to reliability.

The necessity for timeliness over reliability is actually the main reason why
the UDP protocol is actually a preferred transport for delivery of real time data.
TCP delivers a reliable, ordered stream of data: if an intermediate packet is actually
lost, then TCP buffers all the packets after it, waits for a retransmission, and then
delivers the stream in order to the application.

2.6 RTCPeerConnection API

Regardless of the various protocols involved in setting up and maintaining a
peer-to-peer connection, the application API exposed by the browser is fairly easy.
The RTCPeerConnectioninterface (Figure 2.7) is actually responsible for managing
the total life cycle of each peer-to-peer connection.

25

Local user

Application
1 TS ST

RTCPeerConnection | | ¢

VvV YV
<€
Local ICE Age"t Remote N Remote peer
streams streams |« ;
A

[]

STUN server TURN SEIVEr o-e-eveveeeermemeeennnsi

Figure 2.7 — RTCPeerConnection API

* RTCPeerConnection manages the entire ICE workflow for NAT traversal.

« RTCPeerConnection transmits automated (STUN) keepalives among peers.

* RTCPeerConnection keeps an eye on local streams.

* RTCPeerConnection keeps track of remote streams.

* RTCPeerConnection triggers automatic stream renegotiation as needed.

« RTCPeerConnection provides necessary APIs to generate the connection offer,
accept the answer, lets us query the connection for the current state of its, and much
more.

2.7 Establishing a Peer-to-Peer Connection

Initiating a peer-to-peer connection needs much more work than just opening
an XHR, EventSource, or perhaps a new WebSocket session: the latter 3 rely on a
well-defined HTTP handshake mechanism to negotiate the parameters of the
connection, and all 3 implicitly assume that the destination server is actually
reachable by the client - i.e., the server has a publicly routable IP address or perhaps
the client and server are actually located on the same internal network.
26

By comparison, it's very likely that the two WebRTC peers are actually
within their own, distinct private networks and behind one or even more levels of
NATS. As a result, neither peer is directly reachable by the other. In order to begin a
session, we should first gather the possible IP and port candidates for each peer,
traverse the NATS, and then run the connectivity checks to find the ones that work,
and even then, you will find no guarantees that we'll succeed.

Nevertheless, while NAT traversal is actually an issue we should deal with,
we might have gotten ahead of ourselves already. When we open an HTTP
connection to a server, there's an implicit assumption that the server is actually
listening for the handshake of ours; it may want to decline it, but it's nevertheless
always listening for new connections. Unfortunately, the same cannot be said about
a remote peer: the peer may be unreachable or offline, busy, or perhaps simply not
interested in initiating a connection with the other party.

As a result, in order to build a successful peer-to-peer connection, we must
first solve several additional problems:

1. We must notify the other peer of the intent to open a peer-to-peer
connection, such it knows to start listening for incoming packets.

2. We must identify potential routing paths for the peer-to-peer connection on
each side of the connection and relay the info between peers.

3. We must exchange the required info about the parameters of the various
media and data streams - protocols, encodings used, and so on.

The best part is the fact that WebRTC solves one of the issues on our behalf:
the built in ICE protocol performs the necessary routing and connectivity checks.
Nevertheless, the delivery of notifications (signaling initial session negotiation and)
is actually left to the application.

2.7 Multiparty Architectures

One single peer-to-peer connection with bidirectional Hd media streams
could easily use up a considerable portion of users' bandwidth. Due to this fact,
multiparty applications should carefully think about the architecture (Figure 2.8) of
the way in which the individual streams are actually aggregated and distributed
between the peers.

27

2-way call 4-way call 4-way call 4-way call
direct connection mesh network star network centralized distribution

Figure 2.8 — Distribution architecture for an N-way call

One-to-one connections are actually not hard to control and deploy: the peers
talk straight to one another and no additional optimization is needed. Nevertheless,
extending the identical method to a N way call, where each peer is actually
responsible for connecting to every other party (a mesh network) would result in
connections for each peer, in addition to a total of connections! If bandwidth is
actually at a premium, since it usually is a result of the much lower uplink speeds,
then this architecture type will immediately saturate most users' links with only a
couple of participants.

While mesh networks are actually not hard to set up, they're usually
inefficient for multiparty systems. To manage this, an alternative approach is
usually to use a "star" topology instead, where the individual peers connect to a
"supernode,” which is then accountable for distributing the streams to all connected
parties. This way only one peer has to pay the expense of handling and distributing
streams, and everybody else talks directly to the supernode.

A supernode can be another peer, or perhaps it is often a dedicated service
specially optimized for processing and distributing real time data; which strategy is
much more appropriate depends on the application and the context. In probably the
simplest case, the initiator is able to act as a supernode - simple, and this may just
work. An even better strategy might be to pick the peer with probably the best
available throughput, but that also requires additional "election” and signaling
mechanisms.

Lastly, the supernode might be a dedicated and also a third-party service.
WebRTC allows peer-to-peer communication, but this doesn't mean that there's no
room for centralized infrastructure! Individual peers are able to establish peer
connections with a proxy server and yet get the advantage of both the WebRTC
transport infrastructure as well as the additional services provided by the server.

728

2.8 Listing of program

<title>WebRTC screen share demo</title>
<style>
h1, h2, h3 {
background: rgh(238, 238, 238);
border-bottom-width: 1px;
display: block;
margin-top: O;
padding: .2em;
text-align: center,
¥
Jeft-video {
width: 512px;
height: 384px;
border: 1px solid black;
¥
right-video {
width: 512px;
height: 384px;
border: 1px solid black;
¥
Jeft-section {
float: left;
¥
.right-section {
float: right;
¥
.Jbuttons-left-section {
position: absolute;
float: left;
¥
.Jbuttons-right-section {
position: absolute;
right: 6px;
¥

</style>

So this code below refers to css part of the program which answers for screen

sharing windows buttons on the bottom of it and overall look of the program in the

browser.
Cascading Style Sheets (CSS) is actually a style sheet language used for

describing the presentation of a document created in a markup language as HTML
CSS is actually a cornerstone technology of the world Wide Web, alongside

JavaScript and HTML.

29

CSS was created to allow the separation of content and presentation, such as
layout, colors, and fonts. This separation is able to improve content accessibility,
provide control and flexibility more in the specification of presentation
characteristics, enable multiple web pages to share formatting by specifying the
relevant CSS in a separate,css file, and reduce repetition and complexity in the

structural content.

<h1>Screen share using WebRTC</h1>
<h2>Use Chrome or Firefox, connect two browsers.

Firefox allows screen, window and application share, Chrome only alows screen
share when not an extension.</h2>
<div class="left-section">
<h3>Local Screen</h3>
<video class="left-video" id="localvideo™ autoplay controls></video>
<div class="buttons-left-section">
<button type="button" onclick="startMedia();">Start media</button>
<button type="button" onclick="stopMedia();">Stop media</button>
<select id="selector" onchange="selectChanged()" disabled>
<option value="screen">Screen</option>
<option value="window">Window</option>
<option value="application">Application</option>
</select>
</div>
</div>
<div class="right-section">
<h3>Remote Screen</h3>
<video class="right-video" id="remotevideo" autoplay controls></video>
<div class="buttons-right-section">
<button type="button" onclick="share();">Share</button>
<putton type="button" onclick="endShare();">End Share</button>
</div>
</div>

This part of the code answers for title text on the web page and which
function should it operate when user click to button. It gives 3 options of screen
sharing: the whole screen, the chosen window or application. Also there is 2 more
buttons answering for the start of streaming “share” and its finish “end share”.

var hostArray = window.location.host.split(":");
var serverLoc = 'wss://' + hostArray[0] + ":443/
var socket = new WebSocket(serverLoc);
var localvid = document.getElementByld('localvideo’);
var remotevid = document.getElementByld('remotevideo’);
var shareSelector = document.getElementByld('selector");

var localStream = null;
20

var pc = null;

var mediaFlowing = false;

var useH264 = true;

This part of the code answers for server detection from URL.

var userAgent = navigator.userAgent.toLowerCase();
var browserM =
userAgent.match(/(opera|chrome|safari|firefox|msie)[\\s]*([\d\.]+)/);

var browser = navigator.appName.toLowerCase();

if (browserM)
browser = browserM[1];
var isChrome = (browser === "chrome");
var isFirefox = (browser === "firefox");

This part dedicated to browser detection.
var screen_constraints = null;
if (isChrome) {
screen_constraints = {
video: {
mandatory: {
chromeMediaSource: 'screen’,
maxWidth: screen.width,
maxHeight: screen.height,
minFrameRate: 1,
maxFrameRate: 5
h
optional: []
33
}else {

selector.disabled = false;
screen_constraints = {
video: {
mediaSource: "screen"
}
}
}

var offerAnswerConstraints = {
optional: [],
mandatory: {
offerToReceiveAudio: true,
offerToReceiveVideo: true

}
}3

This is the constraints of the program. Although this's a web centric world,

people's conceptions of design are likely to be framed by print design, where a
31

billboard is always the same size, a newspaper ad is always the same size, and a
magazine cover is actually the same size regardless of who's viewing it, or perhaps
exactly where they're reading through the magazine.

Another constraint of site design is actually that unlike print designs, where
the viewing area of any design is actually fixed, web users can (and do) zoom in or
perhaps out as they interact with a web page, changing the size of images and text.
And, by the way, different browsing environments handle zoom differently - some
enlarge images as text is actually enlarged, and other times enlarging text does not
affect other page elements.

function selectChanged() {
var value = shareSelector.options[shareSelector.selectedIndex].value;
if (value == "window") {
screen_constraints = {
video: {
mediaSource: "window"
}
¥
} else if (value == "screen") {
screen_constraints = {
video: {
mediaSource: "screen"
}
Y
} else if (value == "application") {
screen_constraints = {
video: {
mediaSource: "application™

};
}
}

So this part explains how function of choosing which window the user want
to share is working.

function startMedia() {
var promisifiedOldGUM = function(constraints, successCallback,
errorCallback) {
I First get ahold of getUserMedia, if present
var getUserMedia = (navigator.getUserMedia ||

navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia);

/I Some browsers just don't implement it - return a rejected promise with an

error
32

/I to keep a consistent interface
if('getUserMedia) {
return Promise.reject(new Error(‘getUserMedia is not implemented in
this browser"));
¥
Il Otherwise, wrap the call to the old navigator.getUserMedia with a Promise
return new Promise(function(successCallback, errorCallback) {
getUserMedia.call(navigator, constraints, successCallback,
errorCallback);
ok
¥

/I Older browsers might not implement mediaDevices at all, so we set an
empty object first
if(navigator.mediaDevices === undefined) {
navigator.mediaDevices = {};
¥
/I Some browsers partially implement mediaDevices. We can't just assign an
object
Il with getUserMedia as it would overwrite existing properties.
Il Here, we will just add the getUserMedia property if it's missing.
iIf(navigator.mediaDevices.getUserMedia === undefined) {
navigator.mediaDevices.getUserMedia = promisifiedOldGUM,;
}
navigator.mediaDevices.getUserMedia(screen_constraints)
.then(function(stream) {
localStream = stream;
if (localvid.mozSrcObiject) {
localvid.mozSrcObject = stream;
localvid.play();

}else {

try {
localvid.src = window.URL.createObjectURL (stream);

localvid.play();
} catch(e) {
console.log("Error setting video src: ", e);
by
b
by

.catch(function(err) {
console.log(err.name + ": " + err.message);

if (location.protocol === "http:") {
alert('Please test this WebRTC experiment on HTTPS.");
}else {

alert('Screen capturing is either denied or not supported. Have you
enabled the appropriate flag? see README.md');
33

¥

console.error(e);

bk
¥
function onerror(e) {
If (location.protocol === "http:") {
alert('Please test using HTTPS.");
}else {

alert('Screen capturing is either denied or not supported. Have you
enabled the appropriate flag? see README.md");
}

console.error(e);

¥

So this is the main part of the program, in which we can clearly see that how
WebRTC protocol involved into it by using getUserMedia function. The
MediaStream interface represents a stream of media content. A stream consists of
several tracks such as video or perhaps audio tracks. Each track is actually specified
as an instance of MediaStreamTrack. You is able to obtain a MediaStream object
either by making use of the constructor or perhaps by calling
MediaDevices.getUserMedia().

Some user agents subclass this interface to provide more accurate info or
perhaps functionality, like in CanvasCaptureMediaStream.

Each MediaStream has an input, which might be a MediaStream generated by
navigator.getUserMedia(), and an output, which might be passed to a video element
or an RTCPeerConnection.

function stopMedia() {
localvid.src ="";
localStream.getVideoTracks()[0].stop();
b
function useH264Codec(sdp) {
var isFirefox = typeof Install Trigger '=="undefined';
If (isFirefox)
updated_sdp = sdp.replace("m=video 9 UDP/TLS/RTP/SAVPF 120 126
97\r\n","m=video 9 UDP/TLS/RTP/SAVPF 126 120 97\r\n");
else
updated_sdp = sdp.replace("m=video 9 UDP/TLS/RTP/SAVPF 100 101
107 116 117 96 97 99 98\r\n","m=video 9 UDP/TLS/RTP/SAVPF 107 101 100 116
117 96 97 99 98\r\n");
return updated_sdp;

¥

This code above answers for terminating the local video stream or screen
sharing.
4

function setLocalDescAndSendMessageOffer(sessionDescription) {
if (useH264) {
Il use H264 video codec in offer every time
sessionDescription.sdp = useH264Codec(sessionDescription.sdp);
¥
pc.setLocalDescription(sessionDescription);
console.log(*'Sending: SDP");
console.log(sessionDescription);
socket.send(JSON.stringify({
"messageType": "offer",
"peerDescription”: sessionDescription

)1
}

In this part of code SDP packets are sent over web socket.
function setLocalDescAndSendMessageAnswer(sessionDescription) {

if (useH264) {
Il use H264 video codec in offer every time
sessionDescription.sdp = useH264Codec(sessionDescription.sdp);

¥

pc.setLocalDescription(sessionDescription);
console.log(*"Sending: SDP");
console.log(sessionDescription);

socket.send(JSON.stringify({
"messageType": "answer",
"peerDescription™: sessionDescription
D)
¥

function onCreateOfferFailed() {
console.log("Create Offer failed");

¥

This is the continuation of sending SDP packets over web socket via
WebRTC protocol.

function share() {
If (mediaFlowing && localStream) {
createPeerConnection();

mediaFlowing = true;
35

pc.createOffer(setLocalDescAndSendMessageOffer,
onCreateOfferFailed, offerAnswerConstraints);
} else {
alert("Local stream not running yet or media still flowing");
¥
¥

As we can understand in this section of code there is a function which turns
on when you press the ‘start share’ button.

function endShare() {
console.log(*'end share");
socket.send(JSON.stringify({type: "bye"}));

stop();
}
function stop() {
if (pc) {
pc.close();
}
pc = null;
remotevid.src = null;
mediaFlowing = false;
}
function onCreateAnswerFailed(error) {
console.log(*'Create Answer failed: ", error);

¥

socket.addEventListener("message”, onWebSocketMessage, false);
And this section of code is vice-versa answers for ‘end share’ button.

function onWebSocketMessage(evt) {
var message = JSON.parse(evt.data);
if (message.messageType === 'offer’) {
console.log("Received offer...")
if (mediaFlowing) {
createPeerConnection();
mediaFlowing = true;
by
console.log(‘Creating remote session description...");
var remoteDescription = message.peerDescription;
var RTCSessionDescription = window.RTCSessionDescription ||
window.webkitRTCSessionDescription || window.RTCSessionDescription;
pc.setRemoteDescription(new
RTCSessionDescription(remoteDescription), function() {

console.log(‘'Sending answer...");
36

pc.createAnswer(setLocalDescAndSendMessageAnswer,

onCreateAnswerFailed);

}, function() {

console.log('Error setting remote description’);
b
} else if (message.messageType === "answer' && mediaFlowing) {

console.log(‘Received answer...");

console.log('Setting remote session description...");

var remoteDescription = message.peerDescription;

var RTCSessionDescription = window.RTCSessionDescription ||
window.webkitRTCSessionDescription || window.RTCSessionDescription;

pc.setRemoteDescription(new
RTCSessionDescription(remoteDescription));

} else if (message.messageType === "iceCandidate’ && mediaFlowing) {

console.log(‘Received ICE candidate...");

var RTClceCandidate = window.RTClceCandidate I
window.webkitRTClceCandidate || window. RTCIceCandldate

var candidate new
RTClceCandidate({sdpMLinelndex:message.candidate. sdpM Linelndex,
sdpMid:message.candidate.sdpMid, candidate:message.candidate.candidate});

console.log(candidate);

pc.addlceCandidate(candidate);

} else if (message.type === "bye' && mediaFlowing) {
console.log('Received bye™);
stop();
}
}

function createPeerConnection() {
console.log("Creating peer connection");
RTCPeerConnection = window.webkitRTCPeerConnection |
window.RTCPeerConnection;
var pc_config = {"iceServers":[]};

try {
pc = new RTCPeerConnection(pc_config);

} catch (e) {

console.log("Failed to create PeerConnection, exception: " + e.message);
by
I/ send any ice candidates to the other peer
pc.onicecandidate = function (evt) {
if (evt.candidate) {
console.log('Sending ICE candidate...");
console.log(evt.candidate);

socket.send(JSON.stringify({
37

"messageType": "iceCandidate",
"candidate": evt.candidate

)
} else {

console.log("End of candidates.");

¥
Y
console.log("‘Adding local stream...");
pc.addStream(localStream);
pc.addEventListener("addstream”, onRemoteStreamAdded, false);
pc.addEventListener("removestream”, onRemoteStreamRemoved, false)
// when remote adds a stream, hand it on to the local video element
function onRemoteStreamAdded(event) {

console.log("Added remote stream™);

remotevid.src = window.URL.createObjectURL (event.stream);

¥

/I when remote removes a stream, remove it from the local video element
function onRemoteStreamRemoved(event) {

console.log("Remove remote stream");

remotevid.src = "';

k
¥

All this big section of the code is taking care of process messages that are
coming from web socket during our WebRTC peer-to-peer screen sharing session.

Mentioned above part of the code was related to WebRTC session itself. But
that’s not all. We have another part of the program binded to Javascript
programming language. And it is responsible for what is happening in the node.js
part of the program. Node.js is the server part.

var WebSocketServer = require(‘websocket').server;
var https = require(‘https’);

var fs = require('fs");

var clients = [];

var options = {
key: fs.readFileSync(‘webrtcwwsocket-key.pem"),
cert: fs.readFileSync(‘webrtcwwsocket-cert.pem’),

}

var server = https.createServer(options, function(request, response) {
fs.readFile(__dirname + '/index.html’,

function (err, data) {
38

if (err) {
response.writeHead(500);
return response.end('Error loading index.html");
¥
response.writeHead(200);
response.end(data);
bk
ok

server.listen(443, function() {
console.log((new Date()) + " Server is listening on port 443");

bk

/[create the server
wsServer = new WebSocketServer({
httpServer: server

H;

function sendCallback(err) {
if (err) console.error(*send() error: " + err);

¥

/I This callback function is called every time someone
/] tries to connect to the WebSocket server
wsServer.on('request’, function(request) {
console.log((new Date()) + ' Connection from origin ' + request.origin +

var connection = request.accept(null, request.origin);
console.log(* Connection ' + connection.remoteAddress);
clients.push(connection);

/[This is the most important callback for us, we'll handle
/I all messages from users here.
connection.on('message’, function(message) {
If (message.type === "utf8') {
I/ process WebSocket message
console.log((new Date()) + ' Received Message ' + message.utf8Data);
// broadcast message to all connected clients
clients.forEach(function (outputConnection) {
if (outputConnection != connection) {
outputConnection.send(message.utf8Data, sendCallback);

}
i
}
bk

39

connection.on('close’, function(connection) {
/I close user connection

1
bk

console.log((new Date()) + " Peer disconnected.");

3. Life safety section

3.1 Assessment of the forthcoming physical and mental load at service of
the technical characteristic of the equipment of the workplace of the service

personnel

This diploma project considered the development of applications for the
generation of business plans. Development is made on one laptop. In the room
under consideration is 1 employee-computer operator.

The working environment of the PC operator is a set of physical,

chemical, biological, socio-psychological and aesthetic environmental factors
affecting the operator.

A

comprehensive assessment of the working environment factors is

carried out on the basis of the method of physiological classification of the severity
and intensity of work.

Table 3.1 — Categories of severity of work

Index of
categories
of severity
of work

Characteristic category of severity of work

Activities, the presence of which the impact of unsafe and harmful
conditions leads to the development of the most complete
neighboring capital in almost strong people. Most of the physical
conditions of this presence is exacerbated, especially at the end of the
employee stages (replacement, weeks). There are typical
manufacturing predefined capital diazaborine, etc.

Work, the presence of which in consequence of extremely negative
circumstances of work at the end of the labor stage (replacement,
weeks) are created by the interaction, characteristic for the purpose of
painful multifunctional capital of the body in almost strong people,
disappearing from many employees after full entertainment. But
certain people have all the chances to switch to production and high-
class diseases.

Work performed in particularly negative (dangerous) circumstances
of work. The presence of this painful interaction is formed very
rapidly, have all chances to have an irreparable appearance and are
often accompanied by serious violations of the functions of

an

Important organizations. Activities carried out in circumstances
where the maximum permissible concentration
(CONCENTRATION) and the maximum permissible degree (PDU)
of harmful and unsafe working conditions does not exceed the
conditions of regulatory industrial papers.

The presence of this functionality does not break, declensions in
staying well-being, interfaced with high-class activism, does not
appear throughout the whole stage of the person's work.

v The presence of this functionality does not break, declensions in
staying well-being, interfaced with high-class activism, does not
appear throughout the whole stage of the person's work.

\/ Activities, the presence of which the impact of unsafe and dangerous

harmful conditions leads to the development of the most complete
neighboring capital in almost strong people. Most of the physical
conditions of this presence is exacerbated, especially at the end of the
employee stages (replacement, weeks).

There are characteristic production predetermined capital of pre-
iliness, etc.

The study of high-grade notch is carried out taking into account the
magnitude of the properties of health and loss of ability to work.
Factors of region PC operator close up to the optimization of factors:

The temperature of the atmosphere in the RM in the room in the years
warmed. In the production rooms, in which the activities of the computer and VT is
considered the main, must be guaranteed rational characteristics of the local

climate.

The temperature of the atmosphere is 20C.
The duration of the exposure conditions — 480 minutes.
On this basis 2 points are displayed.
The specific gravity of the impact of the condition in the length of the
replacement proletarians can be thought out according to the composition:

t = 480/480 = 1. (3.1)
The specific assessment of the indicator according to the formula 1 will be:
Xy=2x1=2. (3.2)
Table 3.2 — Working environment factors
Working Indicator | Value of | Score factor | The assessment
environment indicator | after duration of | of the
factors optimization | the factor | specific
tpmin after | gravity of
optimization | the working
environment

41

factor Xd

The
temperature of
the air in the
workplace, °C:

warm period

X1

21-22

480

cold period

X2

20-22

480

Industrial dust,
the multiplicity
of exceeding
the MPC,
times.

X3

480

Vibration,
exceeding the
MPL, dB

X4

lower than
MPL

480

Industrial
Noise,
exceeding the
MPL, dB

X5

<1

480

Ultrasound,
exceeding the
MPL, dB

X6

<1

480

Heat radiation
intensity,
W/m2

X7

480

[llumination of
the workplace,
LC:

X8

at the level
of sanitary
norms

480

min object of
distinction, mm

X9

>1

480

category of
work

X10

3-4

480

Physical
dynamic load,

J:

total x10°

X11

4,2

480

regional x10°

X12

2,1

480

Physical static
load, N - s:

on one hand
x10%

X13

<18

480

on both hands
x10%

X14

<43

480

on body

X15

<61

480

4?2

muscles x10%

Workplace RM
(WP), posture stationary,
and movement posture
in space free,
X16 weight of 480 1
the
transported
cargo up to
5 kg
Shift X17 morr_ling 480 1
shift
Duration of
continuous
work during the X18 4 480 1
day, h
Duration of
concentrated
observation, % X19 51-57 96 0,6
of the length of
the work shift
Number of
important x20 | <5 480 1
monitoring
objects
Tempo
(number of
movements per
hour):
small (wrist) X21 361-720 480 2
large (hands) X22 <250 480 1
The number of 1 y»3 | 76175 480 2
calls in an hour
Monotony:
the number of
receptions of X24 6-10 480 2
the operation
the duration of
the recurring X25 31-100 480 2
transactions, s
Work and rest with the
mode %26 inclusiqn 480 1
of music
and

43

gymnastics

Nervous- Complex
emotional load actions on
a given
plan with
the
possibility
of
correction

X27 3 240 1,5

Integrated scoring severity of labor is determined by the formula 3.3:

Ut = Xmax + (6 - Xmax)/6(N-1) XF; , (3.3)

where Xmax - the highest of the obtained partial points;
Xfi — score on i-th of the factors taken into account;
n — number of factors taken into account without one factor Xmax ;
N — total number of factors.

In this case, the values will look like:

Xgpi =35,5;

Ut = 3,661.
Table 3.3- Integral score
Categ_ory of 1 9 3 4 5 5
severity
Integral-point | 10 1.8{19-33 [34-45 4653 |5459 |&0and
estimation more

The result of the accumulated score is considered to be the group of
seriousness of works 3.

The main problem is considered to be self-optimization of the meaning of the
conditions of the labor site of the operator for the purpose of more effective its
activity. Analyzing the data earlier, in order to optimize the circumstances of the
work, it is necessary to reduce the period of irritable and psychological overload, up
to 240 min., to reduce the period of constant activity during the days.

3.2 The calculation of the integral scoring after optimization

It is necessary to calculate the integral score after optimization.
Integrated scoring severity of labor is determined by the formula 5.3.
In this case, the values will look like:

Table 3.3 - Working environment factors

Working Indicator | Value of | Score factor | The assessment
environment indicator after duration of | of the

44

factors optimization | the factor | specific
tpmin after | gravity of
optimization | the working

environment
factor Xd

The

temperature of

the air in the

workplace, °C:

warm period X1 21-22 2 480 2

cold period X2 20-22 1 480 1

Industrial dust,

the multiplicity

of exceeding X3 - 1 480 1

the MPC,

times.

Vibration, lower than

exceeding the X4 MPL 1 480 1

MPL, dB

Industrial

noise, X5 <1 1 480 1

exceeding the

MPL, dB

Ultrasound,

exceeding the X6 <1 1 480 1

MPL, dB

Heat radiation

intensity, X7 1 480 1

W/m2

[llumination of at the level

the workplace, X8 of sanitary 1 480 1

LC: norms

rr}m_obj.ect of X9 51 1 480 1

distinction, mm

category of X10 3-4 1 480 1

work

Physical

dynamic load,

J:

total x10° X11 4,2 1 480 1

regional x10° X12 2,1 1 480 1

Physical static

load, N - s:

on one hand X13 <18 1 480 1

45

x10*

on both hands

<107 X14 <43 480 1
onbody - X15 <61 480 1
muscles x10
Workplace RM
(WP), posture stationary,
and movement posture
in space free,
X16 weight of 480 1
the
transported
cargo up to
5 kg
Shift X17 morr_1ing 480 1
shift
Duration of
continuous
work during the X18 4 480 1
day, h
Duration of
concentrated
observation, % X19 51-57 96 0,6
of the length of
the work shift
Number of
Important X20 <5 480 1
monitoring
objects
Tempo
(number of
movements per
hour):
small (wrist) X21 361-720 480 2
large (hands) X22 < 250 480 1
The number of | s>3 | 76-175 480 2
calls in an hour
Monotony:
the number of
receptions of X24 6-10 480 2
the operation
the duration of
the recurring X25 31-100 480 2

transactions, s

46

Work and rest with the
mode inclusion
X26 of music 1 480 1
and
gymnastics
Nervous- Complex
emotional load actions on
a given
x27 | Planwith 3 240 15
the
possibility
of
correction
X<bi = 32,1;
Ut =2,098.
Table 3.4 - Integral score
Categ_ory of 1 9 3 4 5 5
severity
Integral-point |y 101.8{19-33 |34-45 4653 |5459 |&0and
estimation more

3.3 Conclusion

Prior to the optimization, i.e. in the category of severity of work equal to 3,
some production indicators were reduced-optimization of work and rest. In such
circumstances, the position of the body of a reasonable worker reached up to the
last, thus, what increases the likelihood of diseases and different signs in workers.
In order to optimize the circumstances of the work, it is necessary to reduce the
period of irritable and psychological overload, up to 240 min., to reduce the period
of continuous activity during the days, to reduce the duration of the careful study
up to 20%. After the optimization of the characteristics of the group of the
seriousness of the same 2. The presence of this group shall be observed without
exception of the permissible significance of the conditions of the proletarian
sphere. The presence of this functionality does not break, deviations in the stay of
health, associated with high-class work cannot be traced.

4. Economical part

4.1 Calculation of the cost of software development

According to the formula 4.1, the number of costs required for SOFTWARE
development is determined, which, in turn, includes expenses, accruals,
depreciation and labor payment:

C=WF+SST+D+EC+CMC+MC+OE+0OH, (4.1)
47

where: WF — wage fund;

SST — deductions for social security tax;

D — depreciation;

EC — electricity costs;

CMC — costs of materials and components;

MC — the cost of maintenance;

OE — other expenses;

OH — overhead.

Two components of the salary are the main salary and additional. The wage
Fund is calculated by adding the basic and additional wages according to the
following formula:

WF= Sp +Sadd, (4.2)

where: Sp — basic salary, thousand tenge;
Sadd — additional salary, thousand tenge.
The basic salary is considered according to the formula:
Sp=TXTC/(t,x8), (4.3) where
t., — the average number of days in a month is 21 days, multiplied by the
number of hours in a work day — 8;
TC — tariff rate.

4.2 Calculation of the complexity of software development

To calculate the components of labor costs is determined by the formula 5.4:
Q=g x c, (4.4)
where Q — conditional number of commands;
g — coefficient that takes into account the conditional number of

commands depending on the type of task;

¢ — coefficient taking into account the novelty and complexity of the
program.

In this thesis we used multivariate problems, and the coefficient, which
takes into account the conditional number of teams is 5200.

Next you need to determine the C-coefficient, which takes into account
the novelty and complexity of the program.

According to the degree of novelty, the software can be divided into 4
groups:

group A - development of fundamentally new tasks;
group B - development of original programs;
group C - development of programs using standard solutions;
group D - one-time typical task.
The coefficient of calculation of labor intensity is selected from table 5.1, on
the cross-arrangement of groups of complexity and the degree of novelty.

Table 4.1 — The payoff of the complexity

48

Computer language | Difficulty |Degree of novelty Coefficient C
group A B J|]C]D

1 1,38 (1,26 |1,15 |0,69 1,2
High level 2 1,30 {1,19 |1,08 |0,65 1,35

3 1,20 (1,10 |1,00 |0,60 1,5

1 1,58 (1,45 [1,32 |0,79 1,2
Low level 2 1,49 (1,37 |1,24 |0,74 1,35

3 1,38 (1,26 |1,15]0,69 1,5

For the diploma project was chosen to develop a fundamentally new
program in a high-level programming language with 2 levels of complexity. So

C=1.35.

Next, it is necessary to calculate the main indicator of the component
parts of labour costs according to the formula 4.1.

Q =5200 x 1,35 = 7020 (commands).

Then you need to calculate the time to develop the software. The total time
for product development consists of different components.
The composition of the full time to design the application is shown in 4.2.

Table 4.2 — The structure of the total time to create a software product

Indication of The Maintenance of stage
Stage the tl::ng this
1 Tpd Preparation of the description of task
2 Td Problem description
3 Ta Algorithm development
4 Tfc Develop a flowchart of the algorithm
5 Tw Writing a program in Javascript
6 Tp Program printing
7 Tot Debugging and testing the program
8 Tn t Documentation, user instructions, explanatory

note

In man-hours the time is calculated, while Tpd is taken from the actual
time, the time of the remaining parts is characterized by the calculated method,
according to the conditional number of commands Q.

The time that was spent on one stage of product design can be calculated

by the formula:

49

Tpd (time for the preparation of the description of the problem),
characterized by the fact and is (from 3 to 5 days 8 hours):
Tpd = 24 person / h.
Td (time for the description of the problem) is calculated by the
formula:

Ta=QxC/ (50 xK), (4.5)

where C — the coefficient of accounting for changes in the problem, the
coefficient C depending on the complexity of the problem and the number of
changes is selected in the range from 1.2 to 1.5. In this paper, the coefficient C
= 1.35, selected from table 4.1.
K — coefficient, taking into account the qualification of the
programmer.
Determine the value of the coefficient K from the table 4.3

Table 4.3 — The coefficients of the skill of the programmer

Experience The coefficient of skill
till 2 years 0,8

2-3 years 1

3-5 years 1,1-1,2

5-7 years 13-14

more than 7 years 15-16

In the thesis qualification coefficient K = 0,8, as the experience of working
activity of the programmer is not more than 2 years.

The value of Q was calculated by the formula 5.4, Q = 7020. The calculation
of the (time for the description of the problem) is calculated by the formula 4.5:

Tq=7020 x 1,35/ (50 x 0,8) = 236,9 hours.
T, (time to design the algorithm) determined by the formula 4.6:
T.=Q/ (50 x K), (4.6)

The value Q = 7020, the qualification coefficient K = 0.8 was taken from
table 5. Calculation of T, is calculated by the formula 5.6:

T,=7020/ (50 x 0,8) = 175,5 hours.
Ts (the time for the preparation of the flowchart) is also calculated by the

formula T, 4.6.
Ts. = 7020/ (50 x 0,8) = 175,5 hours.

50

Tw (time of writing the product in the programming language) is considered
according to the formula 4.7:

Tw=Q x 1,5/ (50 x K). (4.7)
Value of Q =7020, K = 0.8, are taken from the table 4.3.
Tw=7020x 1,5/ (50 x 0,8) = 263,25 hours.
T, (time printing programs) is considered by the formula 4.8:
T, = Q/50. (4.8)

Value of Q =7020.
T, = 7020 / 50 = 140,4 hours.

Tot (time of compilation and testing of the program) is considered
according to the formula 4.9:
Tot = Q x 4,2/50 x K. (4.9)
The values of Q and K are also calculated in sub-paragraph 4.5.

Tot = 7020 x 4,2 /50 x 0,8 = 737,1 hours.

T, (time for documentation), taken in fact and equals (from 3 to 5 days 8
hours):

T, =24 person / h.

Total labor costs are defined as the total compound cost of the formula
4.10:

T=Tpd+Td+Ta+ch+Tw+Tp+Tot+Tn.
(4.10)

T=24+236,9+ 1755+ 1755+ 263,25 + 140,4 + 737,1+ 24 = 1776,65
hours.

The minimum wage (minimum wage), which from 01.01.2017 in the
Republic of Kazakhstan is equal to 24459 tenge, which increases depending on
the tariff coefficient that corresponds to this type of work, is the tariff rate.

S, = 1776,65 x 24459/ (21 x 8) = 258661 tg.

Y

Additional salary is equal to 21% of the basic salary, determined by the
formula 4.11:
Sade= 0,21 x Sp (4.11)

Sada = 0,21 x 258661 = 54319 tg.
The total salary is calculated according to the formula 5.2:
WF = 258661 tg + 54319 tg = 312980 tg.

The social tax is 11% (ct. 358 . 1 HK PK) from the employee's income, and
is determined by the formula 5.12:

SST =(WF-ST) x 11%, (4.12)

where ST — pension contributions, which are equal to 10% of WF and
social tax are not taken into account:
ST =WF x 10% (4.13)

ST according to the formula 5.13 is equal to:
ST =312980 tg x 0,1 = 31298 tg.
Social tax according to the formula 5.12 will be:
SST = (312980 tg— 31298 tg) x 0,11 = 30985 tg.

According to the mandatory existing depreciation rates, depreciation is
indicated as a percentage of the cost of equipment and is considered according
to the formula 4.14:

_ CogopxHaxh
T iooxizxe

D (4.14)

where H, — depreciation rate;
Cosop — Initial cost of equipment;
N — time to use your personal computer;
t — number of working days per month.

The cost of the equipment is 160 000 tg.

Depreciation rate (H,) of the equipment is determined by the
formula:

H, = Cotop Crmz 100%, (4.15)

TropoCosop

K52

where C,,.«x — liquidation value, equal to 5.6% of the cost of equipment;
Twopw — Standard service life (for personal computer — 4 years).

__ 160000-8960
A7 4120000

Then it is necessary to mark N-time of equipment use. The total time of

operation of the laptop counts only the time of work on the computer and is
determined by the formula 4.16:

100 = 31,5

T = Ta + ch + TW + Tp + Tot, (416)
All values are already known.

T =175,5+ 175,5+ 263,25 + 140,4 + 737,1 = 1492 hours.

The operating time of the laptop is used in the formula 4.15 in days, so the
value that was calculated by the formula 4.16 (hours) is translated into days.

1492hours/8 = 187days.

The calculation of depreciation is calculated by the formula 4.14.

160000%31,5X 187
A = ———— = 37400Tr,
100%12%21

Electricity costs are calculated according to the formula:
EC=Mx k3x Tx CkWh (4.17)
where M — power of computer (450 Wt);
k3 — load factor (0.8);
CkWh — the cost of 1 kwWh of
electricity;
T - operating time, hour.

EC =0,45x 0,8 x 1492 x 16,65 =8943,048 tg.
The costs of materials and components used in the design of the software

application (CMC), as well as the costs of maintenance and repair (MC) will be
1.3% and 2.7% of the cost of equipment — formula (4.18-4.19):

CMC = 0,013 x Cobop, (4.18)
CCMC =0,013 x 160 000tg = 2080tg,
MC = 0,027 x Cobop, (4.19)

MC = 0,027 x 160 000tg = 4320tg.

The overhead costs associated with the management and maintenance,
maintenance and operation of the equipment and other additional costs to

53

support the processes and circulation are 61.5% of the Wage Fund, determined

by the formula 4.20:

Con = 0,615 x WF, (4.20)

Con= 0,615 x 312980 tg= 192483tg

The General results of the software product cost calculation and its
composition are shown in table 4.4 and figure 4.1.

Table 5.4 — The effective cost table of the software application

Item of expenditure

The sum, thousand

Percentage of total

Total:

tenge
312980 53,120
Wages, WF
_ 30985 5,259
Social tax, SST
. 37400 6,348
Depreciation rate, D
. 8943,048 1,518
Electricity costs, EC
Materials and components, CMC 2080 0.353
Overhead cost, Coh 192483 32,669
Maintenance and repair cost, MC 4320 0,733
589191 100

R4

1%

= 3apaboTtHaa nnata, ®OT

= CoumanbHbli Hanor, OCH

5 AMOPTU3ALMUOHHbIE OTYUCAEHUA, A

1 3aTpaTbl HA 3NEKTPO3Hepruto, C33

= MaTepuainbl U KOMIJIEKTYIOLLKE,
CMuK

= HaknagHble pacxoabl, CHakn

® TexHuyeckoe obCnyMmnBaHue n
pemoHT, CTO

Figure 4.1 - Cost structure of software development

Conclusion

The total cost of developing the software product is 589191 tenge. Since it is
intellectual work, the most part is the salary of the developer 312980 tg. The
payback period of the project does not exceed year and half.

1)

Conclusion

In this diploma work, WebRTC protocol in peer-to-peer systems was
analyzed.

In the first part of the project analysis of the current state of the
WebRTC protocol, the prospects for its development in the world of
telecommunications was done.

In the second part of the diploma work, we analyzed WebRTC network
architecture and technologies used in WebRTC such as WebSocket and
algorithms that occur when 2 clients are connected.

In the section of life safety, an analysis of working and microclimate
conditions was carried out. The calculation of natural and artificial lighting of
the working room is presented. The proposed architecture of data exchange in
the video conferencing application allows you to distribute the data channels
on the relevant protocols and divide tasks between them. Since initially, the
application architecture of video conferencing is asynchronous, was carried
out the development and implementation of new algorithms for data
management that is required to connect client applications on WebRTC
Protocol. As a result, we received a screensharing application that is able to
monitor the status of clients connected " rooms» - on the server during online
chat.

In the economic part, the business plan of the project is also compiled
and a description of the economic efficiency of the project is provided to
calculate the payback period and it is equal to 4 months.

Developed peer-to-peer “serverless” architecture and algorithms of
interaction of the modules of the video conferencing system connects the
client and server parts of the system under the Protocol WebRTC and
communication of client web applications.

It is worth noting that at the moment there are some other problems that
limit the use of the WebRTC Protocol on devices:

1) only three browsers (Opera, Mozilla Firefox, Google Chrome)
support this Protocol;

2) requires a powerful processor and enough memory to process audio
and video data streams. In addition, these browsers do not work with graphics
coprocessors, as a result of which the main processor is loaded.

56

List of abbreviations
RTC — Real Time Communication
P2P — Peer-to-peer
OS — Operating System
API —Application Programming Interface
JSON - JavaScript Object Notation
JS — Javascript
HTML —HyperText Markup Language
IP — Internet Protocol
CPU — Central Processing Unit
10. TCP - Transmission Control Protocol
11.URL — Uniform Resource Locator
12.HTTP — HyperText Transfer Protocol
13.IRC — Internet Relay Chat
14.1M — Instant Message
15.PeerCDN — Peer-top-peer content delivery
16.HD — High Definition
17.TB — Terabyte measure of computer storage capacity
18.CSS - Cascading Style Sheets
19.SDP — Session Description Protocol
20.UDP — User Datagram Protocol
21.ICE — Interactive Connectivity Establishment
22 .NAT — Network Adress Translation
23.STUN — Session Traversal Utilities for NAT
24. TURN — Traversal Using Relays around NAT
25.PC — Personal Computer
26.WF — wage fund,;
27.SST — deductions for social security tax;
28.D — depreciation;
29.EC — electricity costs;
30.CMC - costs of materials and components;
31.MC — the cost of maintenance;
32.0E - other expenses;
33.0H — overhead

©ooNoOR~WNE

K7

List of references

1 Ronzhin, A.L., Saveliev, A.l., Budkov, V.Yu. Context-Aware Mobile
Applications for Communication in Intelligent Environment / A.L. Ronzhin,

2 A.l. Saveliev, V.Yu. Budkov // Internet of Things, Smart Spaces, and
Next Generation Networking. — Springer Berlin Heidelberg, 2012. — C.
307-315.

3 Chan, T. et al. Studying with the cloud: the use of online Web-based
resources to augment a traditional study group format / T. Chan, S. Sennik, A.
Zaki, B. Trotter // CJEM. — 2014. — T. 16. — C.34-37.

4 Gerpott, T. J., Meinert, P. The impact of mobile Internet usage on
mobile voice calling behavior: A two-level analysis of residential mobile
communications customers in Germany / T. J. Gerpott, P. Meinert //
Telecommunications Policy. — 2016. — T. 40. — Ne 1. — C. 62-76.

5 Ainpiabai, T. XK., llyitenos, I'. XK. TexHonoruu nepenadyu JaHHBIX
B cucreMax BuacokoHpepenncsssu / T. XK. AdngpiaoOaii, I'. XK. Illyiitenos //
Hayka, Texnuka u odpazoBanue. — 2015. — No 4(10). — C.77-83.

6 MecsneB C. MoOunbsHast koHbpepeHiicBsa3b oynyiiero / C. Mecsues //
Moo6unbabIie cuctembl. — 2007. — Ne 12. — C. 48-53.

7 H.R. Oh et al. An effective mesh-pull-based P2P video streaming
system using Fountain codes with variable symbol sizes / H. R. Oh, D.
O.Wu, H. Song // Computer Networks. — 2011. — T. 55. — C. 2746-2759.

8 I'ybapes, B. B., O6Geiinat, A. A. AITOPUTM B3aUMHOTO HCKJTIOUYCHUS
OJIHOBPEMEHHOTO JIOCTYIIA MOJIb30BaTeNeH K OOIMM pecypcaM B TUPUHTOBBIX
cucremax / B. B.I'ybapes, A. A. Ooeiigatr // Bectauk HI'TY. — 2009. —
Ne 2. — C. 75-90.

9 Civanlar, M. R. et al. Peer-to-peer multipoint videoconferencing on
the Internet / M. R. Civanlar, O. Ozkasap, T. Celebi // Signal Processing:
Image Communication. — 2005. — T. 20. — pp.743-754.

10 Ramzan, N. et al. Video streaming over P2P networks: Challenges
and opportunities / N. Ramzan, H. Park, E. lzquierdo // Signal Processing:
Image Communication. — 2012 — T. 27. — C. 401-411.

11 E.Xakum»xkaHoB. PacueT acnupanmoHHbIX cUCTEM. JIUTIIOMHOE
npoekTupoBanue. st ctyaeHToB Bcex GpopM 00ydeHHs BCex
crienmanabHocTe. — Anmatsl: AUDC, 2002 - 30 ctp

12 A6aumypatos XK.C., Manan6aeBa C.E. bezonacHocTh
KU3HEACATSIbHOCTH: MEeTOIMYEeCKUE YKa3aH!sl K BBITOJHEHHUIO pa3zerna
«Pacder mpon3BOACTBEHHOTO OCBEIICHUS B BBIMMYCKHBIX pabOTaxX JUIs BCEX
crienmanbHocTel. bakanaspuar - Anmater: AUDC, 2009. - 20 ¢

13 baswinoB K.b., Ammn6aesa C.A., babuua A.A. : MeTtoanueckue
yKa3aHUs 10 BBITOJTHCHUIO YKOHOMHUYECKOTO pa3ielia BEITYCKHON pabOThI
OakanaBpoB JUJIsl CTYJIEHTOB Beex hopm 00yueHus crienuanbHoct 050719 —

PannoTtexHuka, 3neKTpoHUKa U TenekoMmyHuKkanuu — Anmarsl: AUDC, -
2008. -19 c.

Y]

14 Konexc Pecrrybnuku Kazaxcran ot 10 nexabps 2016 roga Ne 99-1V
«O Hanorax u JApyrux o0s3aTelbHbIX TUIaTexax B 0romker (Hamorossrit
KOJIEKC)» (C U3MEHEHHMSAMH U JIOTIOJIHEHUSIMHU 110 cOcTOsiHUIO Ha 28.04.2016 1.),
cT.120.

15 https://hpbn.co/webrtc/

59

Appendix A — List of programming of CSS part of the application

background: rgb(238, 238, 238);
border—bottom—width: 1px;
display: block;
margin—top: 0;
padding: .2em;
text—align: center;
}
. left—video {
width: 512px;
height: 384px;
border: 1px solid black;
}
. right-video {
width: 512px;
height: 384px;

border: 1px solid black;

}

. left—-section {
float: left;

}

.right-section {
float: right;

}

.buttons—left—section {
position: absolute;
float: left;

}
.buttons—right-section {
position: absolute;

right: 6px;

A0

Appendix B — List of programming of server part

// detect server from URL

var hostArray = . o .split(':');
var serverLoc = 'wss://' + hostArray[@] + ':443/'
var socket = new WebSocket(serverLoc);

var localvid = .getElementById(' localvideo');
var remotevid = .getElementById(' remotevideo');
var shareSelector = .getElementById('selector');
var localStream = null;

var pc = null;

var mediaFlowing = false;

var useH264 = true;

// Detect browser
var userAgent = . .toLowerCase();
var browserM = .match(/(opera|chrome|safari|firefox|msie) [\/\sl*([\d\.1+)/);
var browser = . .toLowerCase();
if (browserM)
browser = browserM[1];
var isChrome = (browser === "chrome");
var isFirefox = (browser === "firefox");

var screen_constraints = null;

if (isChrome) {
screen_constraints = {
video: {

mandatory: {
chromeMediaSource: 'screen',
maxWidth: 0 ,
maxHeight:
minFrameRate: 1,
maxFrameRate: 5

e

optional: []

A1

Appendix C — List of programming of getUserMedia function

=== UﬂdEfiHEd) {
= promisified01dGUM;

.getUserMedia(screen_constraints)
.then(function(stream) {
localStream = stream;
if (.) {
= stream;

play();

} else {
try {
WSC = .URL.createObjectURL(stream);
play();
} catch(e) {
console. log("Error setting video src: ", e);
}
}
N
.catch(function(err) {
console. log(err. +"1 " +err.)i
if | . == 'http:') {
alert('Please test this WebRTC experiment on HTTPS.');
} else {
alert('Screen capturing is either denied or not supported. Have you enabled the appropriate flag? see README.md');
}
console.error(e);
Hi
}

function onerror(e) {
if (: = 'http:') {
alert('Please test using HTTPS.');
} else {
alert('Screen capturing is either denied or not supported. Have you enabled the appropriate flag? see README.md');
}

console.error(e);

}

A2

